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Abstract 

Submarine groundwater discharge (SGD) rivals riverine discharge to the world’s oceans 

but remains poorly understood. Until the early 1990’s, geochemical budgets for the ocean 

were developed using material fluxes from rivers only. SGD has been shown to carry 

high concentrations of dissolved nutrients, metals and carbon. However, SGD is a 

difficult to measure, complex phenomenon driven by multiple physical processes. 

Groundwater flow and the resultant chemical exchange at the land-sea interface are 

heavily impacted by the hydrodynamic effects of mixing between variable-density fluids. 

In order to better understand SGD, investigations have focused on the configuration of 

the freshwater-saltwater interface in coastal aquifers. This dissertation contributes to the 

field by providing detailed study of the interplay between the freshwater-saltwater 

interface and SGD at multiple spatial scales. The first study in this dissertation examines 

the dynamics of the freshwater-saltwater interface and associated rates of tidally driven 

and density driven recirculation at the nearshore scale in theoretical beaches. I show that 

beach slope is an important control on the development of the upper saline plume and 

therefore associated rates of seawater recirculation and SGD. The second study focuses 

on SGD, seawater recirculation, and the configuration of the freshwater-saltwater 

interface in a beach on a transgressive barrier island in Georgia. I show that the inclusion 

of real-world heterogeneity in a beach groundwater model leads to important deviations 

from predictions made using only theoretical, homogenous beaches. The third and final 

study of this dissertation investigates SGD
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and the freshwater-saltwater interface at Hobcaw Barony, South Carolina.  I develop a 

conceptual model for groundwater flow at the combined nearshore-embayment scale and 

test the response of these systems to predicted rates of future sea-level rise. I show that 

SGD and solute transport at these two scales are largely independent, and that the impacts 

of future sea-level rise will be much more significant for the nearshore scale.  Finally, 

this dissertation aims to provide a comprehensive, spatially-integrated understanding of 

the pertinent driving forces for coastal groundwater flow and solute transport to aid future 

studies and management decisions.  
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Chapter 1 

Introduction 

Coastal hydrogeology is the study of all groundwater flow and related processes at the 

land-sea interface and has been a topic of active research beginning as early as the mid-

1800s.  Preliminary investigations of coastal groundwater resulted in the assumption that 

fresh and saline groundwater in coastal settings are in static equilibrium. This relationship 

is widely referred to as the Ghyben-Herzberg principle and was first described by a Dutch 

engineer named W. Badon Ghyben (Ghyben, 1889). This initial manuscript received little 

attention and was overlooked (Carlston, 1963). Twelve years later, an engineer named 

Alexander Herzberg independently reached the same conclusion studying water resources 

on the island of Norderney, the Netherlands (Herzberg, 1901). However, as pointed out 

by Carlston [1963], the first description of this principle was actually published 61 years 

prior by an American teacher named Dr. Joseph Du Commun in The American Journal of 

Science (Du Commun, 1828). Unfortunately, Du Commun wasn’t recognized for this 

work, and the principle of static equilibrium between fresh and saline groundwater has 

always been credited to Ghyben and Herzberg. Significant revisions to the Ghyben-

Herzberg principle were made in the mid-20th century as knowledge in groundwater 

dynamics improved.  

 Hydrologists eventually realized that groundwater at the land-sea interface was 

not in static equilibrium due to the fact that groundwater flows. Hubbert [1940] showed 

that the freshwater-saltwater equilibrium was hydrodynamic between flowing fresh  
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groundwater and static saline groundwater. Glover [1959] used analytical solutions to 

show that at steady state, seaward-flowing fresh groundwater discharges through the 

shore at the location of the freshwater-saltwater interface.  Henry [1959] used similar 

analytical solutions to study the intrusion of saline water into coastal aquifers where fresh 

groundwater flow is steady. Other studies focused on the dynamic nature of the interface 

with respect to tidal fluctuations and subsequent diffusion between the fresh and salt 

water (Wentworth, 1948), and that diffusion drives circulation of seawater into the 

subsurface, eventually discharging back to the sea (Cooper, 1959). These hypotheses 

helped develop the framework for subsequent studies which showed that geothermal 

convection drove large volumes of seawater through continental shelf sediments (Kohout, 

1967, 1964, 1960).  

 Growing interest in passive margin geology in the U.S. Atlantic continental 

margin in the mid-to-late-21st century led to drilling and geophysical studies that resulted 

in the discovery and documentation of large reserves of fresh groundwater and irregular 

distributions of brackish and saline groundwater deep in the continental shelf (Hathaway, 

1979; Kohout et al., 1988; Manheim, 1981, 1968). However, the groundwater flow 

dynamics that controlled these observations were poorly understood at the time. Coastal 

groundwater was not a significant field of active research and publication during the 

1980s and 1990s (Moore, 2010a). It was not until the paradigm-shifting discovery of 

large groundwater inputs to the South Atlantic Bight (Moore, 1996) that coastal 

groundwater, and more specifically, submarine groundwater discharge became a topic of 

considerable scientific inquiry for hydrogeologists, chemists and oceanographers. 
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 Submarine groundwater discharge (SGD) is a combination of near-shore 

groundwater discharge and vertical flow through the continental shelf, most likely 

derived from the underlying sedimentary strata (Moore, 2010b). Burnett et al. [2003] 

defined submarine groundwater discharge as the flow of water on continental margins 

from the seabed to the coastal ocean, regardless of fluid composition or driving force. 

This definition has become the most widely accepted in the scientific community because 

it emphasizes that SGD includes both saline and fresh groundwater, as well as 

recirculated seawater. Previously, groundwater was not considered a major source of 

water to the ocean. Recent research has shown that submarine groundwater flux is 

significant.  SGD likely contributes up to three times more water to the ocean than 

riverine flux in the South Atlantic Bight and is probably comprised mostly of recirculated 

seawater (Moore 2010b). Submarine groundwater discharge occurs regionally on 

continental shelves, locally through the nearshore seafloor as well as in beaches and salt 

marshes. Knowledge of the groundwater dynamics that control subsurface flow at the 

land-sea interface and the potential impact of this flow on geochemical processes is 

limited.    

 Significant chemical exchange between pore water and seawater occurs in coastal 

aquifers.  These coastal aquifers, referred to as subterranean estuaries by Moore [1998], 

provide a locale for chemical reactions to occur.  Nutrient export from coastal aquifers to 

the ocean is controlled by redox reactions and groundwater dynamics. As oxygenated sea 

water infiltrates anoxic coastal pore-water, a high redox potential is created. This enables 

biogeochemical reactions to occur, such as nutrient remineralization, followed by 

potential export to the coastal ocean (Burnett et al., 2001; Krest, 2000; Santos et al., 
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2009; Schutte et al., 2015; Shaw et al., 1998; Slomp and Van Cappellen, 2004; Spiteri et 

al., 2006; Valiela et al., 1990). These nutrient fluxes from pore water to the ocean are 

dependent on groundwater dynamics at multiple spatial scales at the land-sea interface.  

 SGD can be separated into three spatial scales to reduce ambiguity between 

spatial scale and associated controls on subsurface flow: (1) the near shore scale; (2) the 

embayment scale; and (3) the shelf-scale (Bratton, 2010). The near shore scale spans 0-10 

m offshore and contains the unconfined surficial aquifer.  The embayment scale spans 

from 10 m offshore to as far as 10 km offshore and contains the first confined aquifer and 

its terminus.  Finally, the shelf-scale spans the entire width and thickness of the 

continental shelf and includes effects from geothermal convection and change in sea level 

over geologic time (Bratton, 2010).  This separation is important because the processes 

that control groundwater dynamics and variability on each of these scales are different. 

Furthermore, the degree to which SGD is influenced by exchange across these separate 

scales is poorly understood. A comprehensive understanding of SGD processes at the 

land-sea interface may require integrated studies across the multiple scales of flow, 

especially to aid in management decisions and mitigation with respect to future sea-level 

rise and increased pressure on groundwater drinking resources.  

 Sea-level is currently predicted to rise between 0.5 and 1.4 m above the 1900 

level by the year 2100. Predicted rates of sea-level rise are proposed to be roughly 

proportional to the magnitude of warming above the temperatures of the pre-Industrial 

Age (Rahmstorf, 2006). However, modern revisions of predicted rates of sea-level rise 

have shown that sea-level is rising at an accelerated rate with respect to atmospheric 

temperature (Rahmstorf et al., 2012). These data suggest that IPCC sea-level projections 
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for the future may be biased low because they did not accurately include the impact of 

melting of continental ice sheets. Sea-level rise due to climactic warming is significant 

threat to human life as well as the economy. The average population density of the near-

coastal zone (112 people/km2) was almost 3 times higher than the average global 

population density (44 people/km2) in 1990 (Nicholls and Small, 2002). In addition, 

socio-economic conditions in the near-coast zone are commonly disadvantaged, 

increasing the severity of the implications of sea-level rise for a significant portion of the 

world’s population. These populations are also heavily reliant on fresh groundwater as a 

drinking resource. Currently, the impact global sea-level rise will have on groundwater 

dynamics and drinking water resources is poorly understood. The specific effects of sea-

level rise on submarine groundwater discharge and solute transport have not been 

thoroughly investigated.  

 This dissertation aims to provide the coastal groundwater scientific community 

with improved understanding of SGD and the associated freshwater-saltwater interface at 

the nearshore and embayment scales. In chapter two, I examine the configuration of the 

freshwater-saltwater interface and rates of seawater recirculation in theoretical beaches of 

differing slope, tidal amplitude, permeability, inflow of fresh groundwater and 

dispersivity. Chapter three compares predictions derived from the theoretical study of 

Chapter two to a beach on a transgressive barrier island in southern Georgia. I also 

examine the impact of various heterogeneities inherent to barrier islands on SGD, 

seawater recirculation and the resultant freshwater-saltwater interface. Chapter four 

focuses on SGD and the freshwater-saltwater interface under Waccamaw Neck, SC. I 

develop a conceptual model for groundwater flow and solute transport at a combined 
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nearshore-embayment scale and test how this system will respond to future rates of sea-

level rise through the year 2100. Overall, these three separate studies provide a more 

comprehensive knowledge of the dynamics of coastal groundwater flow and the 

freshwater-saltwater interface under modern and future hydrological conditions.   
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Chapter 2 

 

Groundwater Transport and the Freshwater-Saltwater Interface below Sandy 

Beaches1 

 

 

 

 

 

 

 

 

 

 

_____________________________________ 

1Evans, T.B., Wilson, A.M., 2016. Groundwater transport and the freshwater-saltwater interface below 
sandy beaches. J. Hydrol. 538, 563-573. doi: 10.1016/j.jhydrol.2016.04.014 
 
Reprinted here with permission of publisher (Appendix A) 
 
0022-1694/© 2016 Elsevier B.V. All rights reserved
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2.1 Abstract 
 
Current conceptual models for groundwater flow in beaches highlight an upper saline 

plume, which is separated from the lower salt wedge by a zone of brackish to fresh 

groundwater discharge.  There is currently limited knowledge of what conditions allow 

an upper saline plume to exist and what factors control its formation.  We used variable-

density, saturated-unsaturated, transient groundwater flow models to investigate the 

configuration of the freshwater-saltwater interface in beaches with slopes varying from 

0.1 to 0.01, in the absence of waves.  We also varied hydraulic conductivity, dispersivity, 

tidal amplitude and inflow of fresh groundwater. The simulated salinity configuration of 

the freshwater-saltwater interfaces varied significantly. No upper saline plumes formed in 

any beach with hydraulic conductivities less than 10 m/d. The slope of the beach was also 

a significant control. Steeper beach faces allowed stronger upper saline plumes to 

develop. Median sediment grain size of the beach is strongly correlated to both beach 

slope and permeability, and therefore the development of an upper saline plume. Prior 

studies of groundwater flow and salinity in beaches have used a range of theoretical 

dispersivities and the appropriate values of dispersivity to be used to represent real 

beaches remains unclear. We found the upper saline plume to weaken with the use of 

larger values of dispersivity. Our results suggest that upper saline plumes do not form in 

all beaches and may be less common than previously considered. 

 

 

 

 



www.manaraa.com

9 
 

2.2 Introduction 

Submarine groundwater discharge through beaches (SGD) has been shown to be a major 

contributor of nutrients, carbon and trace metals to the coastal ocean (Burnett et al., 2001; 

Johannes, 1980; Krest, 2000; Moore, 2010a; Paytan et al., 2006; Valiela et al., 1990; 

Whiting and Childers, 1989). Sandy beaches and beaches comprised of a mixture of sand 

and pebble make up approximately 75% of ice-free coastlines (Brown and McLachlan, 

2002). Due to the global presence of beaches, groundwater flow in beaches is an integral 

constituent of near-shore SGD. Significant volumes of water are transported through 

beach aquifers by tidal pumping (Robinson et al., 2007c; Santos et al., 2011, 2010; Sun, 

1997) and by discharge of fresh groundwater from terrestrial watersheds (Burnett et al., 

2003; Kim and Hwang, 2002; Santos et al., 2011; Taniguchi and Iwakawa, 2004). Wave 

forcing and wave swash in the intertidal zone create strong hydraulic gradients, also 

driving groundwater flow and salt transport in the beach aquifer (Bakhtyar et al., 2013; Li 

et al., 2000; Longuet-Higgins, 1983; Robinson et al., 2014; Sorensen, 2006; Xin et al., 

2010). A distinct freshwater-saltwater interface develops in the beach subsurface where 

terrestrially derived fresh groundwater and recirculating seawater mix.  

Moore (1998) termed the salt-freshwater mixing zone in a coastal aquifer the 

subterranean estuary, emphasizing similarities between surficial estuaries and the shallow 

groundwater system with respect to physical and biogeochemical processes.  Redox 

gradients and the availability of dissolved nutrients in the subterranean estuary drive 

geochemical transformations (Charette and Sholkovitz, 2002; Moore, 1996). Short 

residence times and rapid flow rates of recirculating seawater drive significant mixing in 

the beach aquifer and enhance discharge, driving chemical fluxes across the aquifer-
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ocean interface (Uchiyama et al., 2000; Ullman et al., 2003). Further knowledge of the 

hydrologic processes that occur in these subterranean estuaries is necessary for 

quantifying coastal geochemical budgets.   

The distribution of salinity below beaches is an important indicator of the degree 

of mixing between fresh groundwater and seawater in the subterranean estuary (Galeati et 

al., 1992; Lebbe, 1999; Yuqun Xue et al., 1995). This mixing between groundwater 

bodies is important as it sets up the potential for geochemical transformations to occur. 

The classic conceptual model for groundwater flow and solute transport under a beach 

describes flow of land-derived fresh groundwater toward the ocean, above seawater 

migrating inland, forming a Ghyben-Herzberg freshwater-saltwater interface (Fig. 2.1a). 

Seaward of this interface, seawater recirculation through the aquifer is driven by 

differences in fluid density (Cooper, 1959; Ghyben, 1889; Herzberg, 1901). Studies as 

recent as 10 years ago describe a salt-wedge freshwater-saltwater interface with no upper 

saline plume (Boehm et al., 2006; Cartwright et al., 2004). Field measurements from a 

sandy beach in Cape Henlopen, Delaware, suggest the presence of a complex mixing 

zone and nutrient diagenesis between terrestrial groundwater and recirculating seawater 

at the lower salt wedge (Ullman et al., 2003).  

 Other studies have significantly revised this conceptual model. In some beaches 

an upper saline plume (Fig. 2.1b) exists adjacent to the classic saltwater wedge, separated 

by an upward flow zone (freshwater tube) that discharges near the average low tide mark 

on the beach (Boufadel, 2000; Robinson et al., 2006). Frequent tidal inundation of the 

beach surface allows saline water to infiltrate into the subterranean estuary and develop a 

plume of higher density water above less dense, fresher groundwater below. The upper 
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saline plume is now a fixture of modern conceptual models for groundwater flow below 

beaches (Bratton, 2010; Santos et al., 2012; Thorn and Urish, 2013).  

The configuration of the salinity distribution of the freshwater-saltwater interface 

has important implications for groundwater mixing and geochemistry in the subterranean 

estuary. Robinson et al. (2007b) showed that a beach with an upper saline plume can 

support a more dynamic zone of mixing in the subsurface than beaches with no upper 

saline plume. Oxygenated, recirculated seawater mixes with reduced groundwater and 

sets up a redox/pH potential for chemical transformations (Slomp and Van Cappellen, 

2004; Spiteri et al., 2006). Fully defining the impact of upper saline plumes will require 

additional field monitoring, which in turn requires the ability to predict if, when and 

where an upper saline plume is likely to develop. 

Motivated by the absence of the upper saline plume in several studies, as well as 

our own field site on Sapelo Island, Ga, we hypothesized that upper saline plumes do not 

exist in all beaches and their formation is controlled by major hydrogeologic properties 

such as beach slope, permeability, tidal amplitude, dispersion and fresh groundwater 

input. We constructed variable-density, saturated-unsaturated, transient groundwater flow 

models to perform a sensitivity analysis of the major factors controlling groundwater 

flow and salinity distribution in beaches. 

2.2.1 Groundwater exchange below beaches 

Although previous studies have not directly tested the effects of flow on the configuration 

of the salt distribution of the freshwater-saltwater interface, they have investigated the 

driving forces for flow through a beach. Robinson et al. (2007c) studied the rate of water 

exchange across the aquifer-ocean interface as driven by tidal pumping. They performed 
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a sensitivity analysis of major nondimensional parameters related to tidally driven and 

density driven recirculation (TDR and DDR, respectively) in beach aquifers. TDR is the 

flow of seawater driven into the beach driven by tides, normalized to the terrestrially 

derived fresh groundwater flow into the beach. DDR refers to density-driven convection 

of seawater into the beach normalized to the terrestrially derived fresh groundwater flow.  

Of particular interest here is the nondimensional ratio of the width of the intertidal zone 

to tidal propagation distance (Li et al., 2000; Robinson et al., 2007c):  

𝜀 = 𝐴 cot(𝛽)𝜆       (2.1) 

where A is tidal amplitude, β is beach slope and λ is the tidal propagation distance: 

𝜆 =  �𝑛𝑒𝜔
2𝐾𝐾

                          (2.2) 

where 𝑛𝑒 is effective porosity, ω is tidal period, K is hydraulic conductivity and H is 

aquifer depth. The tidal propagation distance described by equation (2.2) describes the 

reduction of the amplitude of the tide as it propagates into and through the beach aquifer 

(Nielsen, 1990). Robinson et al. (2007c) held all parameters in equation (2.1) constant 

except beach slope (β) and tidal amplitude (A), both of which changed the horizontal 

shoreline excursion. Increasing the beach slope (decreasing ɛ) generally decreased TDR 

rates in the beach aquifer and increased DDR. The effect of changing ɛ on groundwater 

salinity distribution and the resulting type of freshwater-saltwater interface was not 

explicitly examined. A primary goal of the current paper was to test the hypothesis that ɛ 

largely controls the development of an upper saline plume in the subterranean estuary. 

2.3 Numerical Models  

Simulations of tidally influenced flow and solute transport processes were conducted 

using SUTRA (Voss and Provost, 2002).  SUTRA is a finite element groundwater 
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modeling program that simulates variable-density, saturated-unsaturated fluid flow and 

transport of a single solute. We used a modified version to account for changes in total 

stress associated with tidal fluctuations (Wilson and Gardner  2006).  The governing 

equation in the models is a form of the Richards equation 

𝛻 ∙ [𝐾(𝛹)𝛻ℎ] = 𝑆𝑤𝑆𝑠
𝜕ℎ
𝜕𝜕

+ 𝜑 𝜕𝑆𝑤
𝜕𝜕

− 𝛼𝑠𝑆𝑤
𝜕𝜎𝑇
𝜕𝜕

   (2.3) 

where 𝐾 is hydraulic conductivity, 𝛹 is negative pressure head, ℎ is hydraulic head,  𝑆𝑤 is 

water saturation, 𝜑 is porosity, 𝜎𝑇 is total stress and 𝑆𝑠 is the specific storage,  

𝑆𝑠 = 𝜌𝜌(𝛼𝑠 + 𝜑𝜑)   (2.4) 

where  𝜌 is the density of water, 𝜌 is gravity, 𝛼𝑠 is sediment compressibility and 𝜑 is fluid 

compressibility.  

Five model domains were created with beach slopes of 0.01, 0.025, 0.05, 0.075 

and 0.1 to determine the effect of beach slope on groundwater flow and salt transport. 

The modeled range of beach slopes was chosen to be representative of a range of real 

beaches (Bascom, 1951; Creed, 2000; McLachlan and Dorvlo, 2005).  The five 

simulation domains contained a number of nodes ranging from a maximum of 11,707 and 

a minimum of 8,215. The number of elements ranged from a maximum of 11,443 to a 

minimum of 7,962. Element size varied from a maximum of 1 m to a minimum of 50 cm 

in the intertidal zone, where flow rates were the greatest, to ensure that the Peclet and 

Courant criteria were met. The baseline simulation had a porosity value of 0.43 and 

permeability of 1.2 × 10−11 m2, which is equivalent to a hydraulic conductivity of 

approximately 10 m /d. Tidal amplitude, was 1 m and the beach slope was 0.05.  We 

chose a baseline freshwater flux of 7.6 x 10-7 m/s, which was also used in Robinson et al. 

(2007a). Longitudinal and transverse dispersivity for the baseline simulation were 10 and 
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1 m respectively.  All of the five domains were then run through a sensitivity analysis 

that included a range of values for tidal amplitude, dispersivity, inflow of fresh water and 

permeability (Table 2.1). The values of the parameters tested were again selected to be 

representative of those found in real beaches. Permeability values for sandy beaches are 

likely to vary from approximately 10-12 to 10-10 m2 (Wilson et al., 2008). We tested 

longitudinal dispersivity values that ranged from 0.5 to 10 m and held αL/αT constant at a 

value of 10 (Gelhar et al., 1992; Robinson et al., 2007c, 2006). We varied tidal amplitude 

from 0 to 1.5 m.  In our simulations, temperature remained constant; therefore dynamic 

viscosity was also constant. There is slight variability between hydraulic conductivity and 

permeability due to variations in density between fresh and saline groundwater, but this 

difference is negligible. Hereafter, we report hydraulic conductivities rather than 

permeabilities to remain consistent with existing literature. We assumed that the 

sediments were homogenous and isotropic. 

Boundary conditions for the model domains consisted of a no-flow boundary on 

the bottom, a specified fluid flux on the landward vertical boundary and a time-variable, 

combined specified fluid pressure and flux along the surface boundary of the domain 

(Fig. 2.2). For sections of the surface boundary that were never inundated by the tide, the 

boundary condition is no-flow. For areas that were inundated, boundary conditions were 

specified based on tidal height as described in Wilson and Gardner (2006). Inundated 

areas were assigned a pressure based on the depth of the overlying water column. When 

inundated surface nodes had saturations less than 1, a specified flux boundary was 

applied. If a node along the surface of the domain was exposed and the sediment was 

fully saturated, a seepage face formed. A semi-diurnal lunar tide was simulated using a 
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sinusoidal wave with a period of 12 hours.  Tidal amplitude was one of the parameters 

systematically tested in the experiment, ranging from 0.25 to 1.5 m.  Mean water level for 

the tidal signal was set to be 0 m.  

Model domain dimensions were chosen to balance the need for accurate 

simulation results and computational efficiency.  The boundary source of freshwater was 

positioned far enough away from the intertidal zone to avoid artifacts and boundary 

effects. The model was extended far enough offshore that the seaward no flow boundary 

did not interfere with development of the freshwater-saltwater interface. Final model 

domains ranged from 300 – 800 m in length and 32 m in depth.  

For each simulation, the hydraulic head was initially set to 1m throughout the 

model domain; salinity was set to1 for all nodes landward of the center of the intertidal 

zone 34 seaward of this boundary. Salinity is reported in this manuscript using the 

Practical Salinity Scale of 1978 (UNESCO/ICES/SCOR/IAPSO, 1981). Initial conditions 

did not affect the results because all simulations ran until they reached a quasi-steady 

state. A total of 105 separate simulations were developed. Time steps of 10 min were 

required to effectively capture hydraulic responses to tidal fluctuations. All simulations 

reached a quasi-steady state within 550 days.  

We explored three measures to rank the strength of the upper saline plume in each 

simulation. The first was a saline plume salinity gradient (SPSG) measured parallel to the 

upper boundary of the model from the center of the upper saline plume on the beach 

surface to the center of the freshwater tube directly seaward (Fig. 2.1b). The SPSG 

measurement was made at high tide in every model. Both concentration measurements 

were made at a depth of 1 m below land surface, representative of a typical piezometer 
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depth in a beach. This depth also reaches below the zone of shallow mixing induced by 

waves, which were not considered in our simulations. Calculated this way, the SPSG is 

easily measureable in field settings. We classified “strong” upper saline plumes as having 

an SPSG greater than 0.15. “Moderate” upper saline plumes had SPSGs between 0.05 

and 0.015, and “weak” upper saline plumes had SPSGs lower than 0.05. A complete lack 

of an upper saline plume was characterized by an SPSG of 0.  

The other two measures of groundwater flow through the beach were TDR and 

DDR, which were calculated as indications of the volume of water that circulated through 

the beach. To do so, we calculated tidally driven (Qt) and density driven (Qd) recharge 

rates in the beach aquifer. We defined Qt to be all recharge into the beach above the 

elevation of low tide and Qd to be all recharge at elevations lower than that of low tide. 

These volumetric fluxes were then divided by the rate of fresh water inflow into the 

model (Qf) and multiplied by 100 to yield nondimensional TDR and DDR. Robinson et 

al. (2007c) segregated TDR from DDR by the location of the freshwater discharge tube, 

which corresponds very closely to the elevation of low tide. We did not use the location 

of the freshwater discharge tube specifically because it did not exist in every simulation. 

This approach does not measure density-driven recirculation that occurs when density 

gradients center around the high tide line, but our purpose was to identify the presence 

and importance of the freshwater tube. 

We note that the saline plume salinity gradient, as defined above, provides an 

indication of whether an upper saline plume exists at a site, as determined by whether an 

identifiable freshwater tube is present. TDR and DDR are instead measures of how much 

water flows through the system. DDR has the potential to co-vary with the measured 
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SPSG because higher salinity gradients in the upper saline plume may correspond to 

larger density gradients surrounding the lower salt water wedge. These gradients in turn 

drive DDR. TDR is clearly required if an upper saline plume is to form, but the 

relationship between TDR and strong upper saline plumes is more complex. 

2.4 Results 

Our baseline simulation (Table 2.1) was used as a point of comparison for subsequent 

simulations due to the moderate parameter values used and upper saline plume that 

developed (Fig. 2.3a-e). The maximum groundwater salinity in the upper saline plume 

was approximately 33, and the minimum salinity of groundwater discharging from the 

adjacent freshwater tube was approximately 29. In this simulation SPSG was 0.11, which 

indicates a moderate saline plume based on our criteria. TDR for the baseline simulation 

was 56% and DDR was 10%.   Average groundwater flow rates in the intertidal zone 

were greatest during low tides and the least during flood tides (Fig. 2.3b-e). In general, 

saline groundwater infiltrated into the aquifer during high tides and was discharged to the 

coastal ocean during low tides. Groundwater discharge from the beach aquifer was 

focused at the level of the tide as it moved across the beach. The maximum rate of 

discharge over a tidal cycle occurred in the saturated seepage face that formed just above 

the level of the tide during low tide.  

All 105 simulations showed that a Ghyben-Herzberg freshwater-saltwater 

interface developed below the intertidal zone, but the width and configuration of the 

salinity distribution was highly variable. The maximum salinity of the upper saline plume 

ranged from 28 to 34 in each model, and the salinity of groundwater discharging from the 

freshwater tube varied from 6 to 34. For a hydraulic conductivity of 10 m/d, the 
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maximum measured rate for TDR was 85% and the minimum was 6%. The maximum 

rate for DDR was 44% and the minimum was 2%. Although groundwater flow patterns 

changed significantly over the course of a tidal period, the salinity in each simulation 

gradually progressed toward a stable configuration that remained constant throughout the 

tidal cycle. 

The slope of the intertidal zone of the beach was found to be a major controlling 

factor for the development of an upper saline plume and for flow through the beach in 

general.  For the cases simulated, larger beach slopes supported a greater SPSG, greater 

DDR and greater TDR than smaller beach slopes (Table 2.2). When beach slopes fell 

below 0.05, the upper saline plume weakened significantly and could not support density 

gradients high enough to drive significant rates of DDR. This relationship is illustrated 

very clearly in a subset of simulations where tidally averaged flow rates are compared 

directly to the subsequent salinity configuration (Fig. 2.4a-e). Tidally average flow rates 

decrease in magnitude with decreasing beach slope. Beach slopes above or equal to 0.05 

had larger hydraulic gradients, allowing greater discharge rates from the beach, which in 

turn allowed greater rates of TDR. No upper saline plume formed in any beach with a 

slope of 0.01 except when the hydraulic conductivity was set high to 100 m/d. 

SPSG increased with increasing rates of density driven infiltration (Fig. 2.5). 

Higher groundwater salinity gradients between the saline plume and freshwater tube, and 

therefore more distinct upper saline plumes, drove greater rates of density-driven 

convection under the beach. Rates of density-driven infiltration into the beach aquifer 

could therefore be used as an indicator of the strength of the upper saline plume in a 

beach, but we ultimately chose to report measured SPSGs because they can be readily 
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measured in the field. Infiltration rates into the beach aquifer are tedious and difficult to 

measure in a real beach.  

Varying the hydraulic conductivity shifted the range of beach slopes that could 

sustain an upper saline plume (Fig. 2.6a). A hydraulic conductivity of 100 m/d allowed 

the formation of an upper saline plume only in beaches with slopes of 0.025 and 0.01. In 

beaches with slopes greater than 0.025, only a lower salt wedge developed. Only very 

low-slope beaches allowed a weak upper saline plume at this hydraulic conductivity. A 

hydraulic conductivity of 10 m/d led to the highest SPSG measurements and therefore the 

most distinct upper saline plumes (Fig. 2.6a). With this hydraulic conductivity, seawater 

could effectively infiltrate the subsurface during inundation, and tidally-averaged flow 

rates through the beach were high enough to sustain an upper saline plume. No upper 

saline plumes formed in any beach with hydraulic conductivities less than or equal to 1 

m/d because tidally-averaged flow rates through the beach were too low. TDR and DDR 

rates were proportional to hydraulic conductivity because greater volumes of water 

moved through the beach aquifers with higher hydraulic conductivities (Fig. 2.7a; 2.8a). 

 We also varied the flux of fresh groundwater from the landward boundary into the 

models. The magnitude of fresh groundwater input into the model strongly influenced the 

development of the upper saline plume and associated SPSG (Fig. 2.6b). SPSGs were 

very low for inflow velocities of ~10-8 to 10-6 m/s, increasing significantly for velocities 

of 7.6 x 10-6 m/s and greater (Fig. 2.6b). A greater inflow of fresh groundwater caused a 

sharper salinity gradient to develop at the freshwater-saltwater interface because the 

salinity of water discharging through the freshwater tube was lower. For a given 

freshwater flow, SPSGs generally increased with increasing beach slope. No upper saline 
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plumes formed in beaches with a slope of 0.01 regardless of the magnitude of fresh 

groundwater input. Rates of TDR decreased with higher fluxes of terrestrially derived 

freshwater (Fig. 2.7b). DDR increased with higher fluxes of terrestrially derived 

freshwater for beach slopes greater than 0.01 (Fig. 2.8b). 

 We found that tidal amplitude exhibited significant control on the strength of the 

upper saline plume. For beaches with slopes of 0.05 to 0.1, the SPSG and tidal amplitude 

were approximately negatively proportional (Fig. 2.6c). Higher tidal amplitudes caused 

inundation of larger areas of the beach, spreading out the upper saline plume and 

decreasing the SPSG.  The simulations with an intertidal zone slope of 0.025 were 

particularly sensitive to tidal amplitude; for this slope, the upper saline plume failed to 

form for tidal amplitudes less than or equal to 0.75 m. For tidal amplitudes of 1 m or 

greater, the associated SPSG was relatively constant. As previously indicated, no upper 

saline plumes formed in beaches with a slope of 0.01 regardless of the tidal amplitude. 

Rates of TDR increased with increasing tidal amplitude as larger areas of the beach were 

inundated by the tide (Fig. 2.7c). Rates of DDR increased with decreasing tidal amplitude 

because stronger salinity gradients developed between the saline plume and adjacent 

freshwater tube (Fig. 2.8c).   

 Dispersivity was also found to be a major controlling factor for the development 

of an upper saline plume in a beach. Transverse dispersivity was a much more significant 

control on salinity configuration than longitudinal dispersivity because the salinity 

gradients developed perpendicular to the dominant flow direction in the beach (vertical). 

For beaches with slopes of 0.05 or greater, smaller dispersivities increased the SPSG and 

allowed more distinct upper saline plumes to form (Fig. 2.6d). For beaches with lower 
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slopes and smaller dispersivities, upper saline plumes did not form. This occurred 

because a minimum level of mixing was required in the aquifer to allow the formation of 

an upper saline plume. Varying dispersivities in a beach with a slope of 0.01 did not 

produce an upper saline plume. Rates of TDR were relatively constant with increasing 

dispersivities while rates of DDR decreased with increasing dispersivities (Supp. 1D; 

2D). 

2.5 Discussion 

Our results suggest that upper saline plumes do not form in all beaches. We found that 

the most significant controls on the development of an upper saline plume in a beach 

were hydraulic conductivity, the slope of the intertidal zone and fresh groundwater 

inflow. Additionally, we suggest that the median sediment grain size of the beach is 

strongly correlated to the development of an upper saline plume in the subterranean 

estuary due to the dependence of hydraulic conductivity and beach slope on sediment 

grain size.  

  Sediment grain size is an empirical predictor for the slope of the intertidal zone 

on an exposed beach (Bascom, 1951): 

𝛽 = 0.0045𝑒5.4𝑑     (2.5) 

where β is the beach slope and d is the median grain size of the beach sediments. The 

grain size of sediments deposited on a beach is controlled by the wave energy in the 

coastal ocean.  Sediments with a larger median grain size can support a steeper slope 

while sediments with smaller grain sizes build shallower slopes. Due to the relationship 

between grain size and beach slope, grain size is also correlated to the development of an 

upper saline plume. Wilson et al. (2008) showed that the median grain size of coastal 
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sediments is also a good indicator of permeability. Sediments with larger grain sizes had 

higher permeability values in both near-shore and continental shelf samples and can be fit 

by the following equation:   

𝑘 =  4 × 10−10𝑑1.6    (2.6) 

where k is permeability and d is the median grain size of the sediments.  

Due to the correlation between sediment grain size and both permeability and beach 

slope, grain size of beach sediments is also indirectly correlated to the presence/absence 

of an upper saline plume.   

The link between grain size, beach slope and permeability indicates a very 

specific set of conditions required to have an upper saline plume in a beach. As the 

median grain size in a beach increases, the permeability and slope of the intertidal zone 

increase (Fig. 2.9).  Steeper slopes in the intertidal zone support more distinct upper 

saline plumes, but this is balanced by the fact that permeability values also increase and 

flushing rates are more rapid.  Beaches with shallow slopes have finer sediments with 

lower permeability values, further reducing the potential for developing an upper saline 

plume.  

  Strong upper saline plumes have been well documented in sandy beaches around 

the world, including Waquoit Bay, Cape Henlopen and Moreton Island (Abarca et al., 

2013; Heiss and Michael, 2014; Kuan et al., 2012; Robinson et al., 2006). All three of 

these beaches, however, have intertidal zone slopes of approximately 0.09 or greater. 

Bascom (1951) compiled approximately 500 profiles from 40 beaches on the Pacific 

Coast of the United States. Beach slopes in the intertidal zone ranged from 0.25 to 0.01. 

McLachlan and Dorvlo (2005) categorized 161 sandy beach transects from a wide variety 
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of locations worldwide and found that beach slopes range from approximately 0.2 to 

0.0125, with an average beach slope of 0.037. Our model results predict that more 

prominent upper saline plumes develop and persist in beaches with greater slopes. Upper 

saline plumes weakened significantly in beaches with intertidal zone slopes less than 

0.05. This suggests that a large portion of the world’s beaches do not exhibit a strong, 

persistent upper saline plume.  

We can now consider the relationship between the presence of an upper saline 

plume and the volume of submarine groundwater discharge. Strong upper saline plumes 

had high rates of TDR and DDR. Our model results indicate that increasing values of ɛ 

(lower beach slopes) lead to lower SPSGs in the beach, representative of weak or absent 

upper saline plumes (Fig. 2.10a). Robinson et al. (2007c) showed that increasing values 

of ɛ led to increasing rates of TDR for steeper beaches (0.1 to 0.4), and TDR became 

independent of slope for moderate beach slopes (0.067). Our results show that TDR (Fig. 

2.10b) and DDR (Fig. 2.10c) drop off significantly for moderate to low slope beaches 

(0.05 to 0.01). As the beach slope approached the horizontal (increasing values of ɛ), the 

hydraulic gradient that drives seawater infiltration into the intertidal zone decreased. 

These relationships indicate that the formation of a stable upper saline plume occurs in 

beaches where TDR is sufficient to supply the beach with seawater each tidal cycle, and 

where DDR is high due to strong convective flow associated with a strong salinity 

gradient. Higher SPSGs form in beaches with higher slopes. Upper saline plumes cannot 

persist in the subterranean estuary through the tidal cycle when TDR and DDR are low, 

as they are in beaches with low slopes. 
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Controls on the formation of an upper saline plume can be further explored by 

examining the relationship between advection and dispersion in the beach aquifer. We 

can quantify these relationships by using the Peclet number: 

𝑃𝑒 =  𝑣𝑥 𝐿
𝐷

=  𝐿
𝛼𝑇

    (2.7) 

where vx is groundwater velocity, L is the length scale of interest, D the dispersion 

coefficient and  𝛼𝑇 is transverse dispersivity. Substituting the width of the intertidal zone 

(equation 1) for L yields: 

𝑃𝑒 = 𝐿
𝛼𝑇

= 𝐴 cot𝛽
𝛼𝑇

     (2.8) 

where A is tidal amplitude and β is the slope of the beach. The lowest Peclet number 

calculated was equal to 2.5, for a small tidal amplitude (0.25 m) and low beach slope 

(0.01). Therefore, all of the calculated Peclet numbers are greater than 1, indicating that 

advection dominates as the solute transport process in our simulations.  The most 

significant SPSGs, and therefore the strongest upper saline plumes, occurred with 

relatively low (< 15) Peclet numbers (Fig. 2.10d). When Peclet numbers are very high, 

the upper saline plume gets flushed out and SPSGs decrease to 0. In order for an upper 

saline plume to develop, advection through the subterranean aquifer is necessary.   

 Anthropogenic modifications to beaches have the potential to alter groundwater 

flow and exchange. Coastal engineering and beach nourishment are currently active 

strategies to combat sediment loss due to erosion and longshore drift in beaches.  A 

common practice to reduce sediment loss from beaches with high rates of erosion is to 

build up the beach face with sands with larger grain sizes (California Department of 

Boating and Waterways, 2002; Davison et al., 1992; Delft Hydraulics, 1987). The larger 

grain size means that less sediment can be entrained by the local waves due to the 
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increased grain size, leading to a net decrease in erosion. Beach nourishment could 

artificially increase beach slopes and permeability values, thereby allowing the 

development of an upper saline plume.  Inducing the development of an upper saline 

plume in a beach could lead to increased rates of nutrient remineralization and potential 

export to the coastal ocean through higher rates of groundwater mixing and exchange. If 

a beach managed in such a way is within a coastal zone that is already experiencing 

anthropogenic eutrophication and algal blooms, increased nutrient export to sensitive 

coastal waters could further reduce water quality.  Coastal managers should consider the 

potential effects of beach modifications on groundwater systems and the fertility of the 

local coastal ocean.  

It is important to consider that real beaches exhibit variability in sediment grain size 

and therefore permeability and beach slope. Some beaches have multiple slope breaks 

along their profiles where small, localized upper saline plumes could develop. Beach 

profiles are also dynamic with respect to season, experiencing increased rates of erosion 

during winter months and increased sediment accretion during summer (Aubrey, 1979). 

Beaches on transgressive barrier islands can have relic marsh muds buried in the 

subsurface, leading to complex stratigraphy and permeability anisotropy (Anderson et al., 

2000). Although quantifying these effects is beyond the scope of the current paper, these 

effects clearly warrant future investigation.  

In our simulations, we used a simulated tidal signal to represent tidal forcing.  Real 

tidal signals that include variations in mean water level, sea level and lunar cycles such as 

spring-neap tides are likely to yield variable results. Abarca et al. (2013) showed that real 

tides, even with small tidal amplitudes, can create significant variability in fluxes in a 
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beach aquifer. Spring-neap tidal cycles also cause the upper saline plume to expand and 

contract in response to changes in tidal amplitude (Robinson et al., 2007a). Field studies 

with a goal of delineating an upper saline plume in a beach should span an entire lunar 

tidal cycle to capture the variability in both groundwater fluxes and salinity distribution.  

TDR and DDR rates are important data for understanding SGD, but are difficult to 

measure in the field and often require computational methods to estimate. Salinity 

distribution in a beach aquifer is a useful indicator of groundwater flow dynamics. 

Measuring the salinity of groundwater is simple, and often the first step in identifying the 

configuration of the freshwater-saltwater interface in a beach. A saline plume salinity 

gradient can be measured by installing piezometers in the intertidal zone of a beach, near 

the average elevation of low tide and mean sea level. By also measuring the median grain 

size of beach sediments, the beach slope, the tidal amplitude and elevation of mean sea 

level at a field site, it is then possible to estimate general rates of TDR and DDR. For 

example, density-driven recirculation rates are related to the strength of the measured 

SPSG between the saline plume and the freshwater discharge tube, located near the 

average low-tide line. The salinity gradient increases with increasing beach slope. In 

general, the fresher the water in the discharge tube, the greater the rates of DDR in the 

beach. TDR rates are largely dependent on the slope of the beach, tidal amplitude and 

permeability. Beach slopes between 0.5 and 0.1 had the greatest rates of TDR, while rates 

decreased significantly for lower beach slopes where the hydraulic gradient across the 

ocean-aquifer interface was low. When both TDR and DDR rates are low, there will be 

no distinct upper saline plume, and the SPSG in the beach will be close to 0. Flow 

velocities through the beach are slowest in beaches with shallow slopes.  
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2.6 Conclusion  

Our results suggest that the upper saline plume may be an uncommon phenomenon that 

only occurs in beaches with the appropriate combination of beach slope, hydraulic 

conductivity and fresh groundwater flux into the beach. The development of an upper 

saline plume under a beach requires high rates of TDR which create strong salinity 

gradients and therefore high rates of DDR. Steeper beach slopes supported higher SPSGs 

in the beach aquifer and therefore had more distinct upper saline plumes. No upper saline 

plumes formed in any simulations when the hydraulic conductivity was below 10 m/d. 

Sufficient volumes of seawater could not infiltrate the beach aquifer during high tide.  

Upper saline plumes were less distinct for hydraulic conductivities greater than or equal 

to 100 m/d because groundwater was flushed through the beach too rapidly, leading to 

the development of a lower salt wedge only. Increasing the fresh groundwater flux into 

the model decreased the salinity of groundwater that discharged seaward of the upper 

saline plume, increasing the SPSG.  

Dispersivity also had an important effect on the distribution of salinity in the 

groundwater. Lower transverse dispersivities allowed higher SPSGs to develop in the 

simulations. Prior studies of groundwater flow and salinity in beaches have used small 

dispersivities (Robinson et al., 2007c). We found that the upper saline plume became 

much less distinct when larger dispersivities were used, because more mixing occurred in 

the simulations. Real beaches are highly mixed environments, with waves, heterogeneous 

sediments and geologic layering. Longitudinal dispersivity can vary by an order of 2 

within a single field site, adding additional complications to simulating field data of 
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salinity distribution (Gelhar et al., 1992).  The appropriate magnitude of dispersivities to 

be used in modeling groundwater in beaches remains unclear (Smith, 2004).  

The median grain size of beach sediments has the potential to be an indicator of 

whether or not a beach will have an upper saline plume because of the correlations 

between grain size and both beach slope and permeability. In order for a beach to contain 

a prominent upper saline plume, the sediment grain size must allow a steep beach face to 

develop with permeability values high enough to allow sufficient infiltration of seawater 

but not too high to prevent strong salinity gradients from developing. Because of this 

relationship, wide, gently sloping beaches with fine grained sands will not support 

distinct upper saline plumes. 

Finally, the observation of the presence or absence of an upper saline plume in a 

beach is important because it allows a conceptual model to be developed with respect to 

submarine groundwater discharge and seawater recirculation. If a strong upper saline 

plume is identified in a beach, it can be determined that rates of DDR are high. The 

presence of a moderate or weak upper saline plume indicates that rates of DDR are lower 

in that beach. A beach with no upper saline plume will still undergo DDR across the 

lower salt wedge, but the rates will be significantly lower than in beaches with a USP. 

TDR is more difficult to determine from the configuration of the salinity distribution 

alone because TDR is dependent on beach slope, tidal amplitude and inland fresh 

groundwater head. TDR is highest in beaches with moderate to steep slopes (0.05 to 0.1), 

large tidal amplitudes and low terrestrial groundwater flux. These types of beaches 

exhibit moderate/weak upper saline plumes because the SPSG decreases with increasing 

tidal amplitude and decreasing terrestrial groundwater flux.  Therefore, beaches with 
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slopes between 0.05 and 0.1 and no upper saline plume have the highest rates of TDR. 

Beaches with slopes in this range that have an upper saline plume will likely have 

moderate rates of TDR. Any beaches with slopes less than 0.05 will have the lowest rates 

of TDR. High rates of circulation through the beach aquifer are important because they 

could lead to higher rates of geochemical exchange and transformation. By identifying 

the salinity configuration in a beach aquifer, powerful hypotheses about flow and 

geochemical exchange can begin to be developed from a simple measure.  
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Table 2.1. Parameters used in base model and subsequent beach simulations 

*Baseline simulations parameters 

  

Beach Slope 0.01 0.025 0.05* 0.075 0.1  
Tidal 
Amplitude 
(m) 

0.25 0.5 0.75 1.0* 1.25 1.5 

Dispersivity 
(m) (αL, αT) 

(0.5, 
0.05) 

(1, 0.1) (2.5, 
0.25) 

(5, 0.5) (7.5, 
0.75) 

(10,1)* 

Freshwater 
Flux (m/s) 

7.6E-08 7.6E-07* 7.6E-06 7.6E-05 7.6E-04  

Hydraulic 
Conductivity 
(m/d) 

0.1 1 10* 100   
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Table 2.2. Simulations results specific to Figure 4 (a-e) 

 

Model Beach 
Slope 

TDR DDR Max 
Average 
Velocity 
(m/d) 

SPSG  

a 0.1 62% 28% 1.24 0.129 
b 0.075 59% 18% 1.14 0.122 
c 0.05 56% 10% 0.784 0.114 
d 0.025 42% 3% 0.411 0.039 
e 0.01 17% 2.5% 0.253 0.0 
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Figure 2.1. a) Conceptual model of the freshwater-saltwater interface in a beach. After 
Cooper (1959). b) The upper saline plume and associated flow paths. After Robinson et 
al. (2006b). A saline plume salinity gradient (SPSG) was measured from the center of the 
upper saline plume to the center of the adjacent seepage face in every simulation. The 
darker color indicates higher groundwater salinity. 
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            Figure 2.2. An example of one model domain (slope = 0.05) and the subsequent boundary conditions used for every beach       
 simulation.
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Figure 2.3. a) Salinity distribution for the baseline simulation.  The salinity was 
normalized so that 1 = 34. The salinity gradient for this simulation was 0.114. 
Groundwater velocities for the baseline simulation during b) high tide, c) ebb tide, d) low 
tide and e) flood tide. Flow velocities were greatest during low tide and lowest during 
flood tide. Seawater circulated into the aquifer during rising tide. 
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Figure 2.4. Salinity configuration and tide-averaged flow for beaches with intertidal zone 
slopes of a) 0.1, b) 0.075, c) 0.05, d) 0.025 and e) 0.01. The fresh groundwater flux in 
these simulations was 7.6 x 10-7 m/s, hydraulic conductivity was 10 m/d. The magnitude 
of the concentration gradient decreased with decreasing beach slope. As beach slope 
decreased, average flow rate decrease in magnitude, driving lower rates of TDR and 
DDR through the beach. Table 2 describes values for TDR, DDR, average velocity and 
salinity gradient for each simulation.  
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Figure 2.5. Plot of DDR versus SPSG for simulations with baseline hydraulic 
conductivity (10 m/d). The colors represent beach slope (0.1 to 0.01) and the symbols 
represent fresh groundwater inflow (triangle), dispersivity (square) and tidal amplitude 
(circle).   
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Figure 2.6. Simulation results for tested parameters vs. SPSG for each model domain. a) 
Hydraulic conductivity, b) Fresh groundwater inflow, c) Tidal amplitude and d) 
Transverse dispersivity. 
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Figure 2.7. Simulation results for tested parameters vs TDR for each model domain. a) 
Hydraulic conductivity, b) Fresh groundwater inflow, c) Tidal amplitude and d) 
Transverse dispersivity. 
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Figure 2.8. Simulation results for tested parameters vs DDR for each model domain. a) 
Hydraulic conductivity, b) Fresh groundwater inflow, c) Tidal amplitude and d) 
Transverse dispersivity. 
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Figure 2.9. The strength an upper saline plume in a beach, as indicated by SPSG. Open 
circles represent simulation results. The trend line indicates permeability and beach slope 
calculated from median grain size (d50) based on empirical observations (Bascom, 1959; 
Wilson, 2008). Permeability is likely to vary significantly in beaches, and reasonable 
values may fall below the line. Only permeability and beach slope were varied in these 
simulation results; the remaining parameters were equivalent to the baseline simulation.   
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Figure 2.10. a) The ratio of horizontal shoreline excursion to tidal propagation distance 
(ɛ) versus SPSG. b) TDR vs. ε. c) DDR vs ɛ. d) Peclet number vs. SPSG.   Hydraulic 
conductivity is 10 m/d for each case. Intertidal zone slopes (β) were 0.1, 0.075, 0.05, 
0.025 and 0.01. Tidal amplitudes range from 0 to 1.5 m and transverse dispersivity was 1 
m. Note that increasing slopes result in decreasing values of ɛ. 
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Chapter 3 

Submarine Groundwater Discharge and Solute Transport under a 

Transgressive Barrier Island

3.1 Abstract 
 

Many recent investigations of groundwater dynamics in beaches employed groundwater 

models that assumed isotropic, numerically-convenient hydrogeological conditions. Real 

beaches exhibit local variability with respect to stratigraphy, sediment grain size and 

associated topographic profile, so that groundwater flow may diverge significantly from 

idealized models. We used a combination of hydrogeologic field methods and a variable-

density, saturated-unsaturated, transient groundwater flow model to investigate SGD and 

solute transport under Cabretta Beach, a small transgressive barrier island seaward of 

Sapelo Island, Georgia. We found that the inclusion of real beach heterogeneity drove 

important deviations from predictions based on theoretical beaches. Cabretta Beach 

sustained a stronger upper saline plume than predicted due to the presence of a buried 

silty mud layer beneath the surface. Infiltration of seawater was greater for neap tides 

than for spring tides due to variations in beach slope. The strength of the upper saline 

plume was greatest during spring tides, contrary to recent model predictions. The position 

and width of the upper saline plume was highly dynamic through the lunar cycle. Our 

results suggest that field measurements of salinity gradients may be useful for estimating 

rates of tidally and density driven recirculation through the beach. Finally, our results 
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indicate that several important biogeochemical cycles recently studied at Cabretta Beach 

were heavily influenced by groundwater flow and associated solute transport.   

3.2 Introduction 

Surface water-groundwater interactions at the land-sea interface drive significant 

chemical reactions and contribute dissolved metals, carbon and nutrients to the coastal 

ocean (Bowen et al., 2007; Burnett et al., 2003, 2001; Charette and Sholkovitz, 2002; 

D’Elia et al., 1981; Johannes, 1980; Krest, 2000; Paytan et al., 2006; Whiting and 

Childers, 1989).  A major portion of these surface water-groundwater interactions occur 

in sandy beaches (Bokuniewicz et al., 2004; Li et al., 1999), which occupy about 75% of 

the world’s ice-free coastlines (Brown and McLachlan, 2002). Heiss and Michael [2014] 

reviewed the four major driving forces for groundwater flow through beaches: (1) an 

inland hydraulic gradient and associated discharge of fresh groundwater (R. E. Glover, 

1959; Kim and Hwang, 2002; Taniguchi and Iwakawa, 2004) seaward of a saline 

circulation cell (Boufadel, 2000; Michael et al., 2005; Robinson et al., 1998); (2) 

convective mixing due to density gradients between fresh and saline groundwater 

(Cooper, 1959; Groen, 2002; Kohout, 1960); (3) tidal pumping (Abarca et al., 2013; Li et 

al., 2000; Robinson et al., 2007b, 2007c; Sun, 1997; Vandenbohede and Lebbe, 2006); 

and (4) wave setup and swash (Bakhtyar et al., 2013; Heiss et al., 2014; Longuet-Higgins, 

1983; Robinson et al., 2014; Sorensen, 2006; Xin et al., 2010; Fig. 3.1). This combination 

of driving forces in permeable beach sediments leads to rapid flow (0.1 – 10 m d-1), 

which drives chemical transformations and exports dissolved constituents to the ocean 

(Huettel et al., 2014; Slomp and Van Cappellen, 2004).  
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 Previous studies have reported a wide range of biogeochemical reactions in beach 

sediments. The mixing and chemical exchange that occurs in coastal aquifers, termed the 

subterranean estuary (Moore, 1998), is significant and has garnered much scientific 

interest. Charette and Sholkovitz [2002] observed iron oxide coated sands in the 

subterranean estuary at the freshwater-saltwater interface, where reduced pore water 

containing dissolved Fe(II) was in contact with oxidized seawater. These iron oxide 

coatings were shown to prevent phosphorus from discharging to the coastal ocean 

through adsorption, exemplifying the importance of groundwater mixing at the 

freshwater-saltwater interface for geochemical processes. Ullman et al. [2003] showed 

that beaches serve as reservoirs for particulate matter and remineralized reactive organic 

matter from the coastal ocean, which drives higher rates of nutrient fluxes from the beach 

than could be sustained by upland discharge alone. Furthermore, fluxes of dissolved 

organic matter and nutrients from the subterranean estuary to the coastal ocean are 

sensitive to tides (Santos et al., 2009). Schutte et al. [2015] hypothesized that a zone of 

rapid nitrogen cycling and subsequent nitrous oxide production in a beach in southern 

Georgia was controlled by periodic spring tide inundation. At the same field site, a 

confined aquifer system under the beach was hypothesized to facilitate methane export to 

the coastal ocean, but flow rates in this aquifer and the integrity of the confining unit 

were relatively unknown (Schutte et al., 2016). The hydraulic feasibility of these 

proposed groundwater dynamics in the beach requires further investigation. These 

biogeochemical processes, like those in other subterranean estuaries, are likely transport-

limited and may be sensitive to salinity, which indicates the need for a better 

understanding of groundwater flow below beaches. 
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Groundwater salinity is simple field measurement and can be used to provide insight 

into the flow dynamics beneath the beach. In some beaches, two separate saline 

circulation cells develop: (1) The classic freshwater-saltwater interface (FSI) (Cooper, 

1959; Ghyben, 1889; R. E. Glover, 1959; Henry, 1959; Herzberg, 1901); and (2) the 

upper saline plume (USP) (Boufadel, 2000; Lebbe, 1999; Robinson et al., 2006; Fig. 3.1).  

The FSI is present in all beaches and is the salinity configuration that forms at 

equilibrium between flowing land-derived fresh groundwater and circulating saline 

groundwater (Cooper, 1959; Kohout, 1964). Density-driven recirculation (DDR) of 

seawater into the beach aquifer occurs at this interface due to the presence of a sharp 

salinity gradient. The USP develops through tidally driven recirculation (TDR) of 

seawater into the beach above a body of discharging fresh groundwater that exits near the 

elevation of low tide (Boufadel, 2000; Robinson et al., 2006). The shallow beach aquifer 

fills with seawater during rising tide and discharges during low tide after mixing with 

land-derived fresh groundwater. After the initial discovery and description of the USP by 

Boufadel [2000] and Robinson et al. [2006], the established convention was that most 

beach aquifers contained a USP. Recent studies have shown that the USP may be 

transient in coastal aquifers and its presence is highly dependent lunar cycles, fresh 

groundwater head, beach slope and grain size (Abarca et al., 2013; Evans and Wilson, 

2016; Heiss and Michael, 2014). The distribution of salinity in the beach is a direct 

consequence of the flow dynamics within the beach and can potentially be used to 

estimate rates of seawater recirculation (Evans and Wilson, 2016) 

Evans and Wilson [2016] proposed a field measurement called the saline plume 

salinity gradient (SPSG) that was shown to vary with rates of TDR and DDR in 
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theoretical studies. The SPSG is calculated by determining the concentration gradient 

between two points perpendicular to the shore, 1 meter below land surface. The first 

measurement is made at the approximate center of the USP, and the second is collected 

near the center of the freshwater tube directly seaward. These locations roughly correlate 

with mean high and mean low water. Stronger USPs had higher SPSGs. Beaches with the 

strongest USPs had the highest rates of DDR (Evans and Wilson, 2016). TDR was more 

complex and was dependent on beach slope, tidal amplitude and inland hydraulic head 

(Robinson et al., 2007c). These hydraulic parameters can be simultaneously expressed in 

a nondimensional ratio of the width of the intertidal zone to tidal propagation distance (Li 

et al., 2000; Robinson et al., 2007c):  

𝜀 = 𝐴 cot(𝛽)𝜆       (3.1) 

where A is tidal amplitude, β is beach slope and λ is the tidal propagation distance: 

𝜆 =  �𝑛𝑒𝜔
2𝐾𝐾

                          (3.2) 

where 𝑛𝑒 is effective porosity, ω is tidal period, K is hydraulic conductivity and H is 

aquifer depth. In beaches with moderate slopes (0.01 to 0.1), TDR decreased with 

increasing values of ε (Evans and Wilson, 2016). More interestingly, SPSG, TDR and 

DDR are all related to ε, which can be calculated for any beach. Evans and Wilson [2016] 

hypothesized that rates of TDR and DDR could be estimated using only a measured 

SPSG and calculated value for ε. Additionally, these theoretical models predicted that 

SPSG would be higher for lower tidal amplitudes, indicating that neap tides should 

support weaker USPs than spring tides. Rates of seawater recirculation should be higher 

during spring tides (Evans and Wilson, 2016). Although these relationships are valid in 

theoretical beaches, the viability of using a measured SPSG to estimate rates of TDR and 
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DDR in a real beach is unknown. Further study using numerical models calibrated to a 

real beach is required to test these hypotheses. 

Most numerical studies of groundwater flow and solute transport processes in beaches 

assume homogenous, isotropic sand to depths as great as 30 m below land surface 

(Abarca et al., 2013; Ataie-ashtiani et al., 1999; Boufadel, 2000; Evans and Wilson, 

2016; Heiss and Michael, 2014; Lebbe, 1999; Michael et al., 2005; Robinson et al., 

2007c, 2006; Vandenbohede and Lebbe, 2006). The use of homogenous models to 

describe groundwater flow in beaches ignores interbedded sediments present in a large 

portion of the world’s beaches. In addition, many of these models used a constant single 

slope for the intertidal zone of the beach. Real beaches have variable topography due to 

the dynamic impacts of waves and currents.  We hypothesize that the inclusion of real-

world heterogeneity in beach groundwater flow models will highlight important 

deviations from these theoretical models and chose a transgressive barrier island beach as 

a site to test this hypothesis and the potential for estimating TDR and DDR from the 

SPSG. 

 We chose a transgressive barrier island beach as a test beach because barrier islands 

cover 49% of the coastline of passive continental margins and are characterized by 

complex, heterogeneous stratigraphy (Glaeser, 1978). These environments are extremely 

dynamic, and their morphology is controlled by wave action and tidal energy (Hayes, 

1979). As a result, the beach profile across a barrier island is non-uniform. These beaches 

are also commonly underlain by low permeability, silty mud from ancient marsh 

platforms, which could drive anisotropy in groundwater flow. We hypothesized that 

inclusion of a non-uniform beach profile, subsurface heterogeneity and real tidal 
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conditions would highlight significant deviations from theoretical conceptual models for 

beach groundwater flow and the USP. This hypothesis was tested using a combination of 

piezometer installation and hydraulic head monitoring, electrical resistivity tomography, 

and a two dimensional, variable-density, saturated-unsaturated, transient groundwater 

flow model.  

3.3 Site Description 

Cabretta Island is a small Holocene transgressive barrier island on the seaward side of 

Sapelo Island, Georgia (Fig. 3.2). The island experiences a semidiurnal tide with a range 

of ~2.5 m and average annual rainfall of 130 cm (Wilson et al., 2011). For the month of 

June 2012, mean sea-level was 0.24 m, MHW was 1.24 m and MLW was -0.93 m. The 

island is approximately 250 m in width by 2.1 km in length, and reaches a maximum 

elevation of ~3 m (MSL).  The intertidal zone of the beach on the eastern side of the 

island has a slope of approximately 0.025. As described in Wilson et al. [2011], a transect 

extending from a tidal creek to the ocean was vibracored to depths of 3-4 m to determine 

the local stratigraphy in January 2008 (Fig. 3.3).  On the marsh side of the island, a 1-2 m 

thick confining unit of marsh mud and silt was underlain by a permeable confined aquifer 

of fine sand. The forested upland, which was comprised of fine sand, made up the 

unconfined surficial aquifer. This aquifer was underlain by a low permeability confining 

unit made of interbedded silt and clay at approximately 2.5 m below land surface (Fig. 

3.3). On the beach side, the sediments were fine sands with irregularly distributed mud 

and silt layers. Significant erosion of sand from the beach (~ 2 m) over this 4 year period 

was observed while surveying elevations in the summer of 2011.  Additional vibracores 

were collected in the beach in February 2012. These cores revealed a confining unit made 
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of interbedded silts and clays at approximately 3 m below land surface on the beach. 

Below this confining unit was a confined aquifer comprised of fine sand. We focus this 

study on flow and solute transport from the forested upland, through the beach, to the 

ocean.                                                                                                                                       

3.3.1 Biogeochemistry and Hydrogeology of Cabretta Island                              

Several investigations at Cabretta Island have been published in the last 6 years, but none 

were specific to groundwater flow in the beach. Anderson [2010] developed a 

groundwater flow model for the Cabretta Island transect, but groundwater flow dynamics 

and solute transport in the beach were simplified and the underlying low permeability 

mud layer was unknown at that time.  Wilson et al. [2011] presented the effect of 

Tropical Storm Fay on groundwater dynamics at Cabretta Island but focused on the 

marsh side of the island. Schutte et al. [2015, 2016] focused on nitrogen and methane 

cycling on the beach side of Cabretta Island. They showed that both processes were 

largely groundwater transport-limited reactions. A simplified groundwater flow model 

was used to calculate tide-averaged flow velocities needed to calculate N2O and methane 

fluxes from the beach. That model used a sinusoidal tide and annual average rainfall rate. 

The primary objective of the current study is to quantify seawater recirculation and to 

investigate the configuration of the freshwater-saltwater in the beach. A more detailed 

numerical model was required to accomplish these goals. 

3.4 Methods 

3.4.1 Field Methods 

Elevation surveying was conducted in early June 2012 to collect a beach topographic 

profile. Precipitation records were also obtained from the nearby Sapelo Island National 
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Estuarine Research Reserve System (NERRS) weather station located at Marsh Landing. 

Tide water levels were obtained from the nearest NOAA tide gauge (Ft. Pulaski) from 

http://tidesandcurrents.noaa.gov. Ft. Pulaski is approximately 40 miles northeast of 

Sapelo Island and tidal records had a discrepancy of about -0.14 m and 27 min between 

our site at Cabretta and the tide gauge (Wilson et al., 2015).  

As described in detail in Wilson et al. [2011], seven piezometer nests were installed 

along the transect in the summer of 2008 (Fig. 3.2). Piezometers were constructed using 

Schedule 40 PVC (3.2 cm) and Schedule 40 PVC slotted well screen (0.15 mm). The 

deeper wells had screened intervals of 30 cm and the shallow wells were 15 cm. Internal 

casings (2.5 cm) were installed in each well to limit wellbore storage  and exchange 

across the screen during the tidal cycles (Wilson et al., 2011). In the salt marsh, 3 

piezometers were installed at each nest (TT1-TT3), generally at depths of 1, 3 and 5 m 

below land surface (IE TT1-1, TT1-3, and TT1-5). Well nest TT3b was installed at the 

edge of the forested upland at depths approximately 1 and 3 m below land surface. At 

nest TT4, two piezometers were installed that were screened at depths of approximately 2 

and 4 m below land surface (Fig. 3.3). TT5 was located at the top of the dunes when 

installed, reaching approximately 5 m below land surface. At the top of the beach, nest 

TT6 is comprised of 3 piezometers screened at depths 1, 3 and 5 m below land surface. 

The final piezometer nest (TT7) was installed near the low tide mark on the beach, 

comprised of two piezometers screened at 1 and 3 m below land surface respectively 

(Fig. 3.3).  Four years of sustained beach erosion (2008-2012) led to the loss of TT6-1, 

TT6-3, TT7-1 and TT7-3. Three additional piezometers were installed in the beach in 

2012: TT5a, TT7a and TT7b (Fig. 3.3).  

http://tidesandcurrents.noaa.gov/
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 Pressure loggers were installed in the wells to record water level and temperature 

data at 20 min intervals.  A barometer was also installed at the site to correct water levels 

for barometric pressure. For this study, we focused on pressure data for wells TT4-2, 

TT5a-3, TT7a and TT7b from June 2012. Groundwater salinities were collected and 

compiled for all the wells at Cabretta Beach on a regular basis and are presented in 

Schutte et al. [2016].  

 We conducted a Wenner array resistivity 2D profile along the transect at Cabretta 

beach from TT3b to seaward 133 m in August 2012. Electrical resistivity is sensitive to 

groundwater salinity and is useful for delineating the freshwater-saltwater interface in 

coastal settings (Choudhury et al., 2001). The survey was conducted using an AGI Super 

Sting R1 automatic switchbox and a waterproof cable with 28 electrodes and 3 m 

electrode spacing. We measured apparent resistivities along a transect 133 m long (1 roll 

forward) to a target depth of approximately 9 m below land surface. The survey was 

conducted during low tide. The roll forward was overlapped on the mid beach by 30 m in 

order to increase the signal to noise ratio. Approximately 14% of the measured apparent 

resistivity dataset was either negative or anomalously high. Low signal-to-noise ratios in 

those areas were likely caused by signal attenuation in highly conductive saline pore 

water (beach) near the surface in the former case, and signal dampening in highly 

resistive dry quartz sand (upland) in the latter. These data points were discarded before 

performing the inversion. Inverse modeling was conducted using AGI EarthImager 2D to 

convert measured apparent resistivities to a 2D resistivity section (AGI, 2009).  
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3.4.2 Numerical Methods 

Simulations of tidally influenced groundwater flow were conducted using SUTRA, which 

is a model for saturated-unsaturated, variable-density groundwater flow with solute 

transport (Voss and Provost, 2002). The governing equation for the calculations used in 

SUTRA is a form of the Richards equation. We modified this equation to account for 

changes in overlying stress associated with tidal loading (Wilson and Gardner, 2006): 

𝛻 ∙ [𝐾(𝛹)𝛻ℎ] = 𝑆𝑤𝑆𝑠
𝜕ℎ
𝜕𝜕

+ 𝜑 𝜕𝑆𝑤
𝜕𝜕

− 𝛼𝑠𝑆𝑤
𝜕𝜎𝑇
𝜕𝜕

   (3.3) 

where 𝐾 is hydraulic conductivity, 𝛹 is negative pressure head, ℎ is hydraulic head,  𝑆𝑤 

is water saturation, 𝜑 is porosity, 𝜎𝑇 is total stress and 𝑆𝑠 is the specific storage,  

𝑆𝑠 = 𝜌𝜌(𝛼𝑠 + 𝜑𝛽)   (3.4) 

where  𝜌 is the density of water, 𝜌 is gravity, 𝛼𝑠 is sediment compressibility and β is fluid 

compressibility.  

 The model domain was constructed to simulate groundwater flow from the 

forested upland seaward through the beach (Fig. 3.4). The domain was 300 m in length, 

and extended from TT4, across the beach, to the nearshore environment. The surface of 

the domain was created using a topographic profile developed from elevation surveys, 

and it ranged in elevation from 2.75 to -2.5 m mean sea-level (MSL). The domain 

extended down through the subsurface to -10 m (MSL). Domain boundaries were chosen 

to ensure simulation results were not influenced by boundary effects.  

A two-dimensional, finite element, irregular mesh with 16,058 nodes and 15,272 

elements was used for all subsequent simulations. Elements ranged from a maximum size 

of 0.56 m2 to a minimum of 0.01 m2. Element size was refined near the surface, where 
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flow rates were the greatest and salinity changed rapidly, to ensure the Peclet and 

Courant criteria were met. Saturation fronts contained at least 5 nodes to prevent 

problems with numerical convergence in the unsaturated zone.  

The model domain contained 3 distinct hydrostratigraphic units with respect to 

porosity and permeability: (1) surficial silty, fine sand of forested upland; (2) surficial, 

well-sorted, medium grained sand of the beach; and (3) buried, silty mud layers (Table 

3.1). We tested a reasonable range of permeability values for coastal sand deposits (10-10 

to 10-12 m2), as presented in Wilson et al. [2008]. The permeability values used for the 

upland and beach sands (Table 3.1) were ultimately chosen after a sensitivity analysis 

was conducted to match simulated hydraulic head with observed values. The max 

permeability of the mud layer was determined iteratively by comparing simulated 

groundwater salinities of the confined aquifer to electrical resistivity results and 

piezometer samples. The ratio of longitudinal to transverse dispersivity was held constant 

at 10 (αL= 2.5 αT=0.25) (Gelhar et al., 1992; Smith, 2004). 

The relative permeability of  sediments in the unsaturated zone was calculated 

using the van Genuchten equation (van Genuchten, 1980): 

𝑆𝑤 = 𝑆𝑤𝑤 + (𝑆−𝑆𝑤𝑤)
[1+(𝛼|𝜓|)𝑛]𝑚   (3.5) 

where Swr is the residual saturation of the sediment, ψ is suction pressure head, n and m 

are fit parameters, and α is the inverse of the capillary rise (m-1): 

𝛼 = 1
ℎ𝑏
�21 𝑚� − 1�

1−𝑚
   (3.6) 

where hb is the air entry pressure. The fit parameters m and n are related by: 

𝑚 = 1 − 1 𝑛�     (3.7) 

The van Genuchten parameters used in the model are presented in Table 3.1.  
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Boundary conditions were selected to simulate transient groundwater flow driven 

by tides and salinity gradients (Fig. 3.4). The western boundary was assumed to be a no-

flow boundary due to the presence of a flow divide in the forested upland near well 

cluster TT4 (Anderson, 2010). The bottom boundary was assigned a no-flow boundary 

representative of an underlying low permeability layer. The eastern boundary was 

extended offshore sufficiently that flow rates were negligible and a no-flow boundary 

was appropriate.  The upper boundary was assigned a combined specified fluid pressure 

and flux boundary condition depending on the elevation of the tide and saturation. For 

surface nodes that were never inundated by the tide, the boundary condition was a 

specified fluid flux representative of rainfall infiltration (130 cm/year). For nodes that 

were inundated by the tide, the boundary condition was specified according to the height 

of the tide (Wilson and Gardner, 2006). In order to accurately match measured hydraulic 

head peaks at high tide, an additional 20 cm of head was added to the tidal signal 

boundary condition to account for wave-runup (Nielsen, 1990). These nodes were 

assigned a pressure representative of the weight of the overlying column of seawater. 

Surface nodes that were exposed above the height of the tide and were fully saturated 

developed a seepage face.  

Initial conditions for tidal simulations were obtained by first running a simulation 

without tides. Initial pressure for every node was set to be equal to hydrostatic pressure. 

Initial salinity was equal to 35 for the entire model domain. Salinity is reported here using 

the Practical Salinity Scale of 1978 (UNESCO, 1981). Mean sea level was set to the 

average for June 2012 (0.23 m). The simulation ran for 30 years with 3-day time steps 
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until quasi-equilibrium was reached. The results from this preliminary simulation were 

used as the initial conditions for the subsequent tidal simulations.  

An initial tidal simulation using a simplified tide (sine wave) was then performed 

to calculate initial conditions for a final simulation. Tidal amplitude was 1.5 m and the 

period was 12.4 hours. This run required 550 days at 5 minute time steps to reach quasi-

equilibrium with respect to pressure and salinity.  

Next, a simulation was conducted using observed tide and precipitation data from 

June 2012 over two spring-neap tide cycles (28 days). When surface nodes were not 

inundated by the tide, a specified flux representative of either precipitation or evaporation 

was applied based on the rainfall record. During periods of no rainfall, a constant 

evaporation rate of 4 mm/day was applied to the surface nodes. Time steps of 1 minute 

were required to achieve numerical convergence during rapidly changing pressure and 

salinity conditions in the shallow subsurface. 

Finally, we repeated this sequence of simulations with a second model domain 

where the buried, silty mud layers were removed and replaced with sand. The model was 

otherwise identical with respect to boundary conditions and hydrogeological parameters. 

These simulations were used to quantify the influence of the low permeability sediments 

on the configuration of the freshwater-saltwater interface and SGD in the beach. 

The strength of the simulated USP that developed in the beach was determined by 

measuring a saline plume salinity gradient (SPSG) according to the method detailed in 

Evans and Wilson [2016]. In these theoretical models, the strength of the gradient is a 

function of density and tidally driven recirculation through the beach aquifer (Evans and 

Wilson, 2016).  
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Rates of SGD and saline water recirculation (QSGR) into the beach aquifer were 

measured in the tidal simulations for the month of June 2012. The total volumes of water 

infiltrating (QTOT) and discharging (SGDTOT) from the surface boundary of the model 

were calculated for each time step by summing the groundwater flow velocity in each 

surface element and multiplying by porosity and element area. Infiltrating seawater was 

separated into density (QDDR) and tidally driven recirculation (QTDR) as described in 

Evans and Wilson [2016]. QDDR was seawater that infiltrated below the elevation of low 

tide and QTDR was seawater that infiltrated above.  These fluxes were then normalized by 

dividing by the freshwater flux (QF) and multiplying by 100 to yield TDR and DDR as 

percentages to remain consistent with the literature (Robinson et al., 2007c). This 

technique works well for idealized simulations with a sinusoidal tide and specified 

freshwater flux boundary condition. QF and the position of low tide are harder to 

determine in simulations calibrated to real tide data and observed hydraulic head. We 

categorized TDR and DDR based on the elevation of mean low water (MLW) in this 

study. SGD was categorized by salinity using the USGS guidelines: fresh (SGDF) (0 to 

1); brackish (SGDB) (1 to 10); and saline (SGDS) (> 10). This allowed SGD rates to be 

reported with respect to proportions of fresh/brackish/saline water. All infiltrating 

seawater was 34 and rainwater was 0.                                                                               

3.5 Results 

3.5.1 Field Data 

An electrical resistivity tomography survey to a target depth of approximately -10 m 

(MSL) suggested the presence of a complex salinity configuration under Cabretta Beach 

(Fig. 3.5). The root-mean-square error (RMSE) of the inversion between the measured 
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and modeled resistivity was 11.5%. A small brackish-to-freshwater lens (10- 50 Ohm-m) 

near TT3b was modeled in the inversion under the forested upland of Cabretta Island. A 

brackish body of groundwater (3 -10 Ohm-m) was modeled in the confined aquifer 

beneath the mud layer in the beach. The unconfined aquifer in the beach was modeled to 

be saline (< 1.5 Ohm-m) except near the low-tide mark on the beach (TT7) where the 

water was slightly brackish about a meter below land surface (~3 Ohm-m) (Fig. 3.5). 

Using the resistivity survey and stratigraphic data, we interpreted the groundwater system 

to be strongly influenced by the presence of a buried mud/silt layer under the forested 

upland and beach. Fresh groundwater from the upland is diverted below the surficial 

beach aquifer, into the confined aquifer, where it discharges near the elevation of low tide 

on the beach. In order for fresh groundwater from the forested upland to flow into the 

confined beach aquifer, the confining mud layer must be incised somewhere beneath the 

freshwater lens. We estimated that this break in the confining unit was located 

approximately beneath the upper beach, near TT5a (Fig. 3.3).  

Groundwater salinity was periodically sampled from the wells along the transect 

from September 2011 through the summer of 2012 (Table 3.2) Wells in the forested 

upland and dune field were fresh to brackish, wells in the mid beach were saline, and 

wells near the average elevation of low tide were still saline, but slightly fresher (~24). 

No fresh groundwater was measured below the beach during our study. Groundwater in 

the confined beach aquifer below the mud layer in the beach was sampled in the winter of 

2012, between wells TT5 and TT6. We measured the salinity to be approximately 25, but 

the well was abandoned the same day after it filled with silt.  
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Hydraulic head records for wells TT4-2, TT5a-3, TT7b and TT7a for the month 

of June 2012 showed that variability in groundwater levels was mostly driven by daily 

tidal pumping and the spring/neap cycle (Fig. 3.6). TT4-2 was outside the propagation 

distance of the tidal energy. Thus hydraulic head was controlled by freshwater flux, 

drainage and evapotranspiration only. Water levels in the beach wells were 

approximately ~0.2 m higher than the elevation of the tide at high tide (Fig. 3.6). As 

previously indicated, this surplus head was most likely driven by wave-runup on the 

sloping beach face of the intertidal zone (Nielsen, 1990). The magnitude of the hydraulic 

gradient between the wells was greatest during falling and low-tide, when the majority of 

groundwater flow occurred in the beach. However, large spring tides and dry conditions 

during the first week of the month nearly reversed the hydraulic gradient over the transect 

at high tide. Hydraulic head at well TT7a was slightly higher than the head at well TT4-2, 

and was 30-50 cm greater than the head at TT5a-3 (Fig. 3.6).  

3.5.2 Numerical Model Calibration 

We calibrated the groundwater model to salinity measured in the field by adjusting 

permeability values for the hydrostratigraphic units (Table 3.1; 3.2). In general, our 

model successfully reproduced observed groundwater salinities from the piezometers at 

Cabretta Beach. The largest difference between simulated and observed groundwater 

salinity was at well TT4-4 (~3.8). Deviations between simulated and observed 

groundwater salinities were all within a reasonable range of variability for a beach 

system. The distribution of groundwater salinity in the beach model was mostly 

controlled by the permeability of the buried, silty mud layers, for which a value of 5 x 10-
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15 m2 best reproduced the observed salinities. This permeability was also required to 

accurately simulate groundwater head in the forested upland region of the model.  

We also attempted to calibrate the model to observed hydraulic head data. Due to 

the dynamic nature of the beach at Cabretta Island, we estimate that our measurements of 

elevation were accurate to within ± 25 cm for the study period. Highly precise calibration 

between simulated and measured hydraulic head was not possible. The average head at 

well TT4-2 over the study period was 1.85 m, with two prominent peaks above 2 m 

during periods of sustained rainfall (Fig. 3.7a). A permeability of 1 x 10-14 m2, 

representative of silty sand, was required to sustain this head at the western boundary of 

the model. The location of well TT4 was a boundary node in our model. Minor edge 

effects caused the model to be less sensitive to precipitation at TT4 than the measured 

data suggested. There may have also been a discrepancy between the actual rainfall at the 

field site and the rain gauge, which was located approximately 2 miles away. A 

permeability of 5.8 x 10-11 m2 best reproduced hydraulic head at well TT5a. Simulated 

and measured hydraulic head were in close agreement except for a period of 

approximately 7 days, where the model results under-predicted head during low tide (Fig. 

3.7b). The modeled results were slightly higher during the first few high tides of the 

month compared to the field data (Fig. 3.7b). These differences were probably caused by 

a small discrepancy between the actual elevation of land surface and that used in the 

model, which affected the location of well TT5a in the tidal frame. 

Groundwater head for beach wells TT7a and TT7b was calibrated using a 

permeability of 5.8 x 10-11 m2 (Fig. 3.7c-d). We were unable to reproduce the troughs in 

hydraulic head during periods of no rainfall in the measured data (Fig. 3.7c-d). Van 
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Genuchten fit parameters did not impact the model significantly enough to reproduce the 

observed head at low tide. Results were much more sensitive to permeability. In order to 

force the model to reproduce the measured hydraulic head at low tide, a permeability of 9 

x 10-10 m2 was required. This value is unrealistic for a beach with a median grain size of 

approximately 0.3 mm. Test simulations that reached quasi-equilibrium using this 

permeability in the beach resulted in uniform groundwater salinities of 34 throughout the 

entire domain in the tidal range.  We propose that the discrepancy between the measured 

and simulated hydraulic head at low tide was caused by uncertainty in the total thickness 

of overlying sediment above the screened interval of the well (erosion), uncertainty in 

elevation datum, and evaporation in the beach during periods of drought. Although the 

model was unable to exactly reproduce the observed hydraulic head data for the lower 

beach, the general impact of spring/neap tides and precipitation on groundwater flow was 

captured.  

3.5.3. Model Results 

Our simulation results showed that a moderate strength USP developed under the upper 

beach around mean high water (MHW), adjacent to a zone of slightly fresher, but still 

saline groundwater discharge at the elevation of mean low water (MLW). A standard FSI 

developed seaward of this zone of discharge (Fig. 3.8a). The salinity of the groundwater 

within the upper saline plume was approximately 31.5, and the salinity of the 

groundwater that discharged near MLW was 24. The average SPSG (Evans and Wilson, 

2016) for June 2012 was 0.075 (Table 3.3) No fresh groundwater was present under the 

beach, existing only in the freshwater lens beneath the upland.  
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Groundwater flow paths were greatly impacted by subsurface heterogeneity. In 

general, groundwater flowed downward under the forested upland and into the confined 

aquifer where it mixed with saline groundwater and eventually discharged at the terminus 

of the silty mud layer (Fig. 3.8b). Some groundwater discharged slightly above the 

elevation of the highest spring tides, near well TT5a (x = 25 m). Above the confining unit 

in the beach, a flow divide developed between wells TT5 and TT6, at the approximate 

elevation of MHW (Fig. 3.8b).  West of this flow divide, infiltrating seawater flowed 

slightly landward, where it eventually flowed downward and through the break in the 

confining unit and mixed with fresh groundwater from the upland. East of the divide, 

groundwater flowed rapidly seaward and discharged at changes in beach slope and at the 

elevation of MLW. Density-driven convection drove seawater to infiltrate the subsurface 

seaward of the FSI (Fig. 3.8b). Groundwater flow ranged from 1 to 2 cm/day in the 

forested upland, 5 to 100 cm/day in the permeable beach sands, 1 to 2 cm/day in the silty 

mud layers, and less than 1 cm/day offshore where the sediment surface was always 

inundated by the sea (Fig. 3.8b).  

We calculated total fluxes of SGD and SGR from Cabretta Beach. The total 

volume of SGD over a single tide was 5.7 m3 per meter of shoreline (Table 3.3). The total 

volume of seawater to infiltrate the beach aquifer over one tide (QSGR) was 2.6 m3 per 

meter of shoreline (Table 3.3). Recirculated seawater accounted for approximately 46% 

of the total SGD from Cabretta Beach in one tide. The remainder originated as fresh 

water that became saline through mixing below the beach.  

Simulation results for the month of June 2012 were further examined with respect 

to the spring/neap lunar cycle. A large spring tide occurred during the first week of June, 



www.manaraa.com

 

62 
 

reaching MHHW of approximately 1.5 m and MLLW of -1.3 m. Groundwater salinities 

and flow velocities were averaged over the spring tide period (Table 3.3; Fig. 3.9a). 

Impacted by the higher high tides associated with the spring lunar cycle, the center of the 

upper saline plume was transported up the beach approximately 10 m and was shortened 

about 35% compared to the June 2012 average. The salinity of the center of the upper 

saline plume increased from about 31.5 to 32.7, and the salinity at the seepage face near 

MLW decreased slightly to 24. The width of this seepage face increased 200% (10 to 30 

m) for the spring tide cycle compared to the month average (Fig. 3.7a; Fig. 3.9a). The 

location of the FSI did not change. The magnitude of the SPSG increased from the month 

average of 0.075 to an average of 0.084 for the spring tide cycle.  

Groundwater flow directions for the spring tidal cycle were mostly unchanged 

when compared to the monthly average results. The only significant change was a 

landward shift of the flow divide in the upper beach approximately 10 m, from MHW to 

MHHW (Fig. 3.9a). Groundwater flow velocities increased significantly during spring 

tides in the upper beach and confined beach aquifer. Shallow groundwater flow above the 

buried mud layer in the beach increased from an average of about 30 – 60 cm/day to 60-

100 cm/day. Velocities in the confined beach aquifer increased from an average of about 

40 cm/day to approximately 65 cm/day (Fig. 3.9a).  

Following the spring tide cycle, a neap tide cycle lasted through the second week 

of June 2012. During this period, MHW decreased to about 0.9 m and MLW increased to 

about -0.75 m. Groundwater salinities and flow velocities were averaged over the neap 

tide cycle and reported (Table 3.3; Fig. 3.9b).  Driven by the shift in the tidal range, the 

center of the USP migrated down the beach approximately 15 m compared to the spring 
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tide location (~5 m below the month average). The total width of the USP increased 40% 

(~10 m) from the spring tide and salinity remained constant (Fig. 3.9b). The salinity in 

the upper 1 m of the seepage face adjacent to the USP increased by about 2 as compared 

to the spring tide. The location of the FSI did not change. The magnitude of the SPSG 

decreased from 0.084 for the spring tide cycle to 0.072 for the neap cycle (Table 3.3).  

Groundwater flow paths for the neap tide cycle were unchanged compared to the 

spring tide results except that the flow divide in the upper beach migrated seaward 

approximately 15 m (Fig. 3.9a-b).  Groundwater flow velocities decreased significantly 

compared to the results for the spring tide cycle in the upper beach and confined beach 

aquifer. Above the confining mud layer, groundwater velocities decreased from 

approximately 60-100 cm/day for the spring tide cycle to about 20-50 cm/day for the 

neap cycle (Fig. 3.9b) 

Total fluxes of SGD and SGR were calculated through the spring/neap tide cycle 

(Table 3.3). The SGD flux during a spring tide cycle at Cabretta Beach was 5.8 m3 per 

meter of shoreline per tide. Over 99% of this SGD was saline groundwater. The total 

volume of QSGR over a single tide was 2.5 m3 per meter of shoreline. Recirculated 

seawater accounted for approximately 43% of the total SGD during this period. The SGD 

flux during the neap tide cycle at Cabretta Beach was 5.5 m3 per meter of shoreline per 

tide. Virtually the entire volume of SGD was saline. Brackish and fresh groundwater 

discharge made up less than 1% of the total SGD. The total volume of QSGR was 2.7 m3 

per meter of shoreline per tide. Recirculated seawater accounted for approximately 49% 

of the total SGD over the neap cycle.  
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The configuration of the freshwater-saltwater interface was significantly different 

when the buried silty mud layers were removed (Fig. 3.10a). Most notably, the depth to 

which the USP extended beneath the beach surface increased approximately 4 m. The 

width of the USP beneath the beach remained the same, approximately 90 m. Beneath the 

forested upland, the freshwater lens extended the entire depth of the model domain. 

Groundwater salinities were overall much higher for the simulation without confining 

units. The average salinity of groundwater in the center of the USP was approximately 33 

and the salinity in the adjacent seepage face near MLW was 28. The location of the FSI 

remained around x = 150 m. The average SPSG over the simulation was 0.063 (Table 

3.3).  

Groundwater flow paths were also significantly different for the simulation 

without buried mud beneath the beach. Average groundwater flow paths for the month 

showed a large convection cell across the freshwater-saltwater interface that developed 

approximately below the dune ridge (x = 20 m) (Fig. 3.10b). This convection reversed the 

direction of groundwater flow beneath the forested upland from downward to upward, 

where it eventually discharged on the high beach (x = 25 m). Slightly seaward of this 

seepage face, a large tidally-driven circulation cell developed where groundwater 

generally flowed downward from the upper beach and discharged near the elevation of 

MLW (Fig. 3.10b). The flow divide that was present in the previous simulations did not 

develop here, suggesting this phenomenon was controlled by the presence of a buried 

mud layer beneath the beach. Groundwater flow velocities were relatively similar in the 

two simulations for the forested upland, shallow beach subsurface and offshore. Beneath 
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the beach, velocities were higher (75 – 100 cm/d). Total volumes of SGD and SGR were 

very similar whether the mud layer was included or not (Table 3.3).   

The flux of seawater that infiltrated the beach aquifer over the month of June 

2012 was separated into tidally driven and density driven recirculation (TDR and DDR) 

(Table 3.3). We only report average values for the month of June 2012 for the 

simulations with and without a buried mud layer. For the simulation containing the buried 

mud layer, QTDR into the beach over a single tide was 1.8 m3 per meter of shoreline. QDDR 

was 0.8 m3 per meter of shoreline per tide. Normalized using QF, TDR and DDR were 

60% and 25% respectively. QTDR and QDDR were 1.9 and 0.6 m3 per meter of shoreline 

per tide for the simulation without the mud layer. Normalized using QF, TDR and DDR 

were 64 % and 21% respectively. TDR increased slightly in the simulation without the 

buried mud, which drove a decrease in the magnitude of the SPSG. DDR also decreased 

in this simulation due to a lower salinity gradient in the beach.                                          

3.6 Discussion                                                                                               

Accounting for heterogeneities in a beach groundwater model caused significant 

deviations from results based on theoretical studies involving only uniform, isotropic 

beach sand, and a constant beach slope. Real beaches, especially on barrier islands, 

contain buried layers of silt and mud in the shallow subsurface, and they have a variable 

topographic profile. Multiple slopes along the beach profile caused mean sea-level to fall 

asymmetrically on the beach surface between MHW and MLW. At Cabretta Beach, this 

asymmetry resulted in neap tides encountering a slightly higher average intertidal zone 

slope (~0.3) than spring tides (~0.25). Beach slope in the intertidal zone is an important 

control on the strength of the USP and on rates of TDR and DDR.  We found subsurface 
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heterogeneity at Cabretta Beach also controlled the development of a complex 

freshwater-saltwater interface.   

Cabretta Beach supported a wide, dispersed, moderate-strength USP (SPSG = 0.075) 

with an average beach slope of approximately 0.03. Based on estimates from Evans and 

Wilson [2016], a theoretical beach similar to Cabretta Beach should contain a weaker 

USP.  A beach with a SPSG of 0.075 required a beach slope of approximately 0.05. The 

strength of the plume was enhanced because the relict marsh mud layer under the beach 

decreased mixing between tidally-driven infiltrating seawater and the land-derived 

groundwater below. This confined aquifer system under the beach also permitted fresher 

groundwater to discharge near the elevation of MLW. Therefore, the inclusion of 

geologic heterogeneity in the shallow subsurface of the beach increased the strength of 

the USP actually supported under Cabretta Beach.  

The inclusion of a realistic topographic profile in numerical simulations also led to 

deviations from theoretical predictions for groundwater flow associated with tidal 

amplitude and spring/neap tidal cycles. Spring tides at Cabretta Beach during June 2012 

had tidal amplitudes of approximately 3 m, and neap tides about 2 m. Using theoretical 

predictions from the literature as guidelines, spring tides should have higher rates of SGR 

(sum of QTDR and QDDR) into the beach than neap tides, and spring tides should have a 

lower SPSG (weaker upper saline plume). However, our results indicated the contrary: 

spring tides had a slightly lower flux of SGR into the beach, and a higher SPSG. This 

deviation was caused by variation in slopes across the beach profile at Cabretta. TDR and 

DDR increase with increasing beach slope when beach slopes are less than or equal to 0.1 

(Evans and Wilson, 2016). The total flux of SGR increased at Cabretta Beach during 
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neap tides because the average slope of the intertidal zone for neap tides was slightly 

higher than it was during spring tides. Furthermore, the magnitude of the SPSG was 

lower for neap tides even though the tidal amplitude decreased.  

The location of the freshwater discharge tube (FWT) is controlled by the elevation of 

MLW, which is a product of the average elevations of low tide through the semi-diurnal 

and spring/neap tidal cycles. The average elevation of low tide during the neap cycle was 

only slightly further down the beach than the position of the FWT. During spring tides, 

low tide was nearly 50 m further down the beach. Therefore, the location of the FWT on 

the beach was inundated by the sea for a longer portion of the tidal cycle during neap 

tides than during spring tides. This more frequent inundation period and associated SGR 

increased the salinity in the FWT, which decreased the magnitude of the SPSG. If the 

tidal amplitude were to remain equal to the neap tide amplitude (2 m), the system would 

re-equilibrate and the position of the FWT would shift landward, and the resultant SPSG 

would likely be higher. The neap tidal period of one week is not long enough to induce 

this change. The position of the FWT and USP in the beach are the product of the 

combination of dynamic tidal cycles and beach topographic profile. Clearly a difference 

exists between theoretical beach models with a static tidal amplitude and uniform beach 

slope, and beach models that include these heterogeneities.   

Although our results suggest that theoretical numerical models of groundwater flow 

may not fully capture the dynamic processes that occur in beach aquifers, they are still 

very useful for providing broad, general predictions for SGD. The SPSG in Cabretta 

Beach was approximately 0.075 for the month of June 2012. According to Evans and 

Wilson [2016], a SPSG of 0.075 would lead to a value of approximately 3.5 for the ratio 
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of the width of the intertidal zone to tidal propagation distance (ε) in a beach, given a 

tidal amplitude of 1.25 m and a hydraulic conductivity of 10 m/d. Furthermore, their 

study suggested that a value of 3.5 for ε would result in a TDR of ~55% and a DDR of 

~9%. Our model results indicate that for the month of June 2012, TDR and DDR were 

equal to 60% and 25% respectively. Although not perfect, these results for TDR and 

DDR in Cabretta Beach are similar to what Evans and Wilson [2016] predicted using 

theoretical, numerically convenient beaches. The magnitude of ε decreases with 

increasing values of hydraulic conductivity, which could explain why the predicted 

theoretical values for TDR and DDR are lower than those calculated in this study. Evans 

and Wilson [2016] used a hydraulic conductivity of 10 m/d. We found a hydraulic 

conductivity of ~50 m/d (k = 5.8 x 10-11 m2) to best represent Cabretta Beach. These 

comparisons suggest that first-order estimates for TDR and DDR could be obtained using 

a simple field measurement in the beach and the numerical relationships of Evans and 

Wilson [2016] and Robinson et al. [2007b]. 

 Our results indicate that the average SGD flux for Cabretta Beach is equal to 

approximately 5.7 m3 per meter of shoreline per tide. Expanded to the total coastline 

length of Sapelo Island (22 km), the SGD flux is approximately 2.6 x 105 m3/d. Georgia 

has a total coastline length of approximately 160 km, which suggests a total SGD flux of 

approximately 1.9 x 106 m3/d. To put this volume of water into context, the Altamaha 

River, which discharges to the Atlantic Ocean just south of Sapelo Island, has an average 

discharge of 1.8 x 107 m3/d (USGS 84 year mean statistic). This river is the third largest 

contributor of freshwater to the Atlantic from eastern North America (Frangiamore and 

Gibbons, 2016). When compared directly, SGD from the beaches of Georgia contribute 
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approximately 10% as much water to the Atlantic as the Altamaha River. The average 

width of the beaches on Sapelo Island is about 200 m, and the length of shoreline is about 

22,800 m. This gives a total beach surface area of about 4.6 km2. The total area of the 

Altamaha River drainage basin is about 36,000 km2. When accounting for total discharge 

per unit area, the beaches of Sapelo Island discharge approximately 120 times more water 

to the Atlantic Ocean than the Altamaha River (~6 x 10-2 m3/m2/d; ~5 x 10-4 m3/m2/d). 

Beaches clearly have the potential to discharge large volumes of water to the coastal 

ocean that could have significant impacts on nearshore chemistry and biogeochemical 

cycles.  

Groundwater dynamics at Cabretta Beach moderated significant biogeochemical 

processes (Schutte et al., 2015, 2016).  Our results support the published hypothesis that a 

nitrous oxide hotspot on the upper beach at Cabretta was supported by infrequent 

inundation by high spring tides (Schutte et al., 2015). This zone became unsaturated 

during neap tidal cycles, when the concentration of N2O decreased. During high spring 

tides, this zone was recharged with a mixture of infiltrating seawater and fresh 

groundwater from the upland that could potentially supply enough NO3
- to maintain rates 

of N2O production (Schutte et al., 2015).  Moreover, Schutte et al. [2016] showed that 

methane export from a zone of methanogenesis in the freshwater lens under Cabretta 

Island was largely controlled by methanotrophy in the buried coastal sediments. They 

showed that in the unconfined, surficial aquifer of the beach, rates of methanotrophy 

were high enough to act as a sink for CH4, preventing significant export to the ocean. 

They indicated that a more plausible transport pathway for CH4 to the coastal ocean was 

down through the confined aquifer buried under the beach. Schutte et al. [2016] used a 
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groundwater flow velocity estimate from a previous version of the Cabretta groundwater 

flow model that predicted an average flow rate (~0.025 m/d) in the confined beach 

aquifer. This model did not include a break in the confining unit, and as a result, 

groundwater flowed much more slowly beneath the beach. They used this velocity to 

calculate an average residence time of greater than 10 years. Our new results suggest a 

much higher representative average flow velocity in the beach confined aquifer of ~0.4 

m/day, and an average residence time of closer to 1 year. Higher velocities and therefore 

a shorter residence time could allow the confined aquifer under the beach to export higher 

concentrations of CH4 to the coastal ocean than previously considered. 

 Although we attempted to calibrate our numerical model to data collected in the 

field as closely as possible, truly verifying and validating a numerical model of natural 

Earth systems in not possible (Oreskes et al., 1994).  As a result, numerical models at 

their best can only provide a rough conceptual framework for groundwater dynamics and 

SGD fluxes at the coast. Real beach systems can exhibit extreme local heterogeneities 

with respect to the subsurface sedimentology, topographic profile, sediment transport, 

and dynamic forces such as waves, tides and storms, which could potentially drive 

extreme variability in local groundwater flow systems. As a result, numerical models are 

useful mostly for providing best estimates of how beach groundwater systems behave 

despite the inherit assumptions and non-uniqueness that models themselves contain. 

However, SGD is extremely difficult to measure in the field, especially at large spatial 

scales, and numerical models currently provide one of best methods for quantifying these 

fluxes.  
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3.7 Conclusion 

We found that a calibrated numerical model of beach groundwater flow that included 

observed heterogeneities, such as layered stratigraphy and variable beach topography, 

differed in some ways from conceptual models developed using theoretical, numerically 

convenient beaches only. Real beaches are unlikely to be comprised solely of isotropic, 

well-sorted permeable sands to depths of 10-30 m, or to have uniform slopes. At Cabretta 

Beach, a buried, silty mud layer allowed the beach to support a stronger USP than a 

similar beach that consisted of only permeable sands. Variations in slope across the beach 

profile allowed slightly larger fluxes of SGR to occur during neap tides than during 

spring tides. The elevation of mean sea-level did not fall symmetrically between MHW 

and MLW on the surface of the beach, which caused significant variability in the size and 

extent of the upper saline plume between spring and neap tidal cycles. This asymmetry is 

probably common in real beaches.  

Our results show that Cabretta Beach had an average flux of 5.7 m3 per meter of 

shoreline per tide for the month of June 2012. Virtually all of this SGD to the coastal 

ocean was saline. The average flux of SGR was 2.6 m3 per meter of shoreline per tide, 

and approximately 69% of this flux was due to TDR and 31% was due to DDR. After 

replacing the buried mud layer with permeable sand, the total SGD and SGR fluxes were 

constant, but TDR increased 4% and DDR decreased 4%. This shift in the proportions of 

TDR and DDR that made up the total SGR was consistent with a decrease in the 

magnitude of the SPSG.  

Additionally, we note that our results support the hypothesis in Evans and Wilson 

[2016] that a simple field measurement (SPSG) could be used to develop preliminary 
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estimates for SGD and SGR in a beach. We found the calibrated Cabretta Beach 

groundwater model results to be very similar to the predicted values for the SPSG, 

TDR/DDR, and ε in Evans and Wilson [2016] for theoretical beaches with similar 

hydrologic properties. Although our results were in close agreement with studies using 

theoretical beaches only, more extensive investigation into the reliability of using SPSG 

measurements to calculate rough estimates for TDR/DDR fluxes is required. 

Finally, our results confirmed that flow systems hypothesized to support 

biogeochemical cycling are hydrologically feasible. Our results support a conceptual 

model in which flow through a dynamic unsaturated-saturated zone under the upper 

beach, which was controlled by the spring-neap tidal cycle, could allow rapid nitrogen 

cycling and subsequent nitrous oxide production to occur (Schutte et al., 2015). This N2O 

hotspot was located at the interface between land-derived meteoric groundwater and 

seawater that infiltrated the shallow subsurface during high spring tides. Additionally, the 

confined aquifer beneath the beach potentially facilitated transport of CH4 from a zone of 

high methanogenesis under the island upland, out to the coastal ocean (Schutte et al., 

2016). We calculated average flow rates through the confined aquifer of approximately 

0.4 m/d, which resulted in a revised residence time calculation of approximately 1 year. 

This lower residence time could result in higher fluxes of CH4 from the beach to the 

coastal ocean. Our results from Cabretta Beach suggest that important biogeochemical 

cycles in coastal sediments are largely influenced by the complex groundwater flow 

dynamics under the beach.  
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Table 3.1. Model parameters used for Cabretta Beach.  

Model Parameter Upland Silty Sand Beach Sand Silty Mud Layer 
Porosity φ 0.35 0.425 0.7 

Permeability k (m2) 1 x 10-14 

(5 x 10-15- 5 x 10-12)* 
5.8 x 10-11 

(1 x 10-11 – 9 x10-10)* 
5 x 10-15 

(1 x 10-16 – 1 x 10-14)* 

Longitudinal 
Dispersivity αL (m) 2.5 

Transverse Dispersivity 
αT (m) 0.25 

Van Genuchten Fit 
Parameters m, n 0.875, 8 0.6, 2.5 Never exposed 

Capillary Rise α (kPa-1) 9.5 x 10-5 1.0 x 10-4 Never exposed 
*Range of values tested 
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Table 3.2. Salinity measurements for Cabretta Beach. For the Schutte et al. [2016] 
column, values represent the median, followed by the interquartile range in parenthesis.  

Location Depth msl 
(m) 

Schutte et al. 
2016 Field Data 

Model Data 
(June 2012 
Average) 

TT4 0.97 1.0 (0.8-1.1) 1.5 (9/16/11) 0.0 
(-1.5) 

TT4 -1.01 3.8 (3.1-6.4) - 0.0 
(-3.8) 

TT5a 1.36 - 26.0 (7/2/12) 25.0 
(-1.0) 

TT5a -0.39 - 27.5 (7/2/12) 25.5 
(-2.0) 

TT5 0.38 4.7 (4.4-4.9) 33.6 (11/15/12) 30.8 
(-2.8) 

Confined Beach 
Aquifer -2.1 - 25.2 (2/3/12) 26.0 

(+0.8) 

TT6 -0.94 22.1 (16.2-
26.3) 31.5 (9/16/11) 32.0 

(+0.5) 

TT7b -0.29 - 28.3 (7/2/12) 31.5 
(+3.2) 

TT7a -0.65 - 29.5 (7/2/12) 30.2 
(+0.7) 

TT7 -1.97 22.3 (21.0-
24.0) 27.2 (7/2/12) 28.6 

(+1.4) 

Ocean  32.0 (30.7-
34.0) 35.7 (7/2/12) 34.0 
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Table 3.3. Volumetric fluxes, tidally driven and density driven recirculation 
(TDR/DDR), and saline plume salinity gradient (SPSG) for each simulation. Fluxes are in 
units of cubic meters per meter of shoreline per tide (m3/m/tide).  

 Spring Tide Neap Tide     June 2012       No Mud 
QF 3.2 2.9 3.1 3.1 

QSGR 2.5 2.7 2.6 2.6 
SGDF 2.2 x 10-2 9.9 x 10-3 2.02 x 10-2 8.9 x 10-3 

SGDB 4.7 x 10-3 2.4 x 10-3 7.3 x 10-2 3.2 x 10-3 

SGDS 5.8 5.5 5.6 5.6 
QTOT 5.7 5.6 5.7 5.7 

SGDTOT 5.8 5.5 5.7 5.7 
QTDR   1.8 1.9 
QDDR   0.8 0.6 

TDR (%)   60 64 
DDR (%)   25 21 

SPSG (unitless) 0.084 0.072 0.075 0.069 
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Figure 3.1. Conceptual model of the driving forces for groundwater flow under a beach. 
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Figure 3.2. Location map of Sapelo Island and adjacent Cabretta Island, Georgia. The 
red line indicates the location of the Cabretta Island groundwater transect.  
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Figure 3.3. Stratigraphic cross section showing well locations and sediment types under Cabretta Island. This study focuses on the 
beach side of the transect, east from well TT4 to offshore. The dashed line represents the topographic profile of Cabretta Beach 
reported in Wilson et al. [2011]. Green lines represent the wells and associated data that were used in this study. Red lines represent 
wells that were lost to beach erosion.  
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Figure 3.4. The Cabretta Beach groundwater model domain and boundary conditions. 
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Figure 3.5. Electrical resistivity tomography results from Cabretta Beach at low tide on August 8, 2012. Warm colors represent low 
apparent resistivity and therefore more saline groundwater. Cool colors represent high apparent resistivity and therefore brackish or 
fresh groundwater. The box represents the extent of the Cabretta Beach groundwater model and the dashed line represents the location 
of the mud layer beneath the beach. For this study, we used data from wells TT4-2, TT5a-3, TT7b and TT7a. RMSE = 11.5%. 
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Figure 3.6. Field hydraulic head data for wells TT4-2, TT5a-3, TT7b and TT7a, tidal height, and precipitation data for the month of 
June 2012 at Cabretta Island. 
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Figure 3.7. a) Simulated hydraulic head, observed hydraulic head, and precipitation for    
well TT4-2 for June 2012. b) Simulated hydraulic head vs. field data for well TT5a. c) 
Simulated hydraulic head and observed hydraulic head for well TT7b. d) Simulated 
hydraulic head and observed hydraulic head for well TT7a.  
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Figure 3.8. a) Average simulated groundwater salinity beneath Cabretta Beach for the month of June 2012. Vertical exaggeration is 4 
times. b) Average groundwater flow velocity and direction beneath Cabretta Beach for the month of June 2012. Vertical exaggeration 
is 4 times. 
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Figure 3.9. a) Average simulated groundwater salinity and flow velocity over the spring tide cycle that occurred from June 2 to June 8 
2012. b) Average simulated groundwater salinity and flow velocity over the neap tide cycle that occurred from June 9 to June 14. 
Vertical exaggeration is 4 times.  
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Figure 3.10. a) Average simulated groundwater salinity in the Cabretta Beach model where the buried mud layers were replaced with 
permeable beach sand. Vertical exaggeration is 4 times. b) Average groundwater flow velocity and direction in the Cabretta Beach 
model without mud. Vertical exaggeration is 4 times. 
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Chapter 4 

The Impact of Future Sea-Level Rise on Coastal Groundwater Systems at 

the Nearshore and Embayment Scales 

4.1 Abstract 
 

Shallow coastal groundwater flow in beaches and salt marshes has been widely studied 

over the past 20 years, but far less is known about groundwater flow dynamics or the 

configuration of the freshwater-saltwater interface in the first major confined aquifer 

under the coastal environment. The impact of future sea-level rise on this system is even 

further understudied at this scale, termed the embayment scale.  We used a combination 

of hydrogeologic field methods at Waccamaw Neck, SC, and numerical models to 

develop a revised conceptual model for groundwater flow and transport at an integrated 

nearshore-embayment scale. We also investigated the impact of future predicted rates of 

sea-level rise on this system. We found that the nearshore and embayment scale aquifers 

were hydraulically independent. A complex distribution of groundwater salinity 

developed in the first major confined aquifer, driven by continual diffusion of salt from 

overlying permeable sediments as sea-level rose through the mid to late Holocene. A 

plume of ancient fresh-to-brackish groundwater discharged near the terminus of the 

major confining unit offshore. Modern tidal simulations showed that the nearshore 

groundwater flow system contributed much higher fluxes of submarine groundwater 

discharge (SGD) to the coastal ocean than the embayment scale per unit area. We found 
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the North Inlet salt marsh to contribute total SGD flux of ~298 L/m2/yr, and the inner 

shelf to contribute ~25 L/m2/yr. For the inner shelf, this rate is equal to about 365 

m3/m/yr. Rates of submarine groundwater recirculation (SGR) were also greater for the 

nearshore scale.  Our results suggest that predicted rates of future sea-level rise will have 

a much more significant impact on nearshore SGD and salinization than on the 

embayment scale. In general, total fluxes of SGD and SGR decreased significantly with 

future sea-level rise at the nearshore scale, but were relatively constant at the embayment 

scale.  

4.2 Introduction 

Coastal groundwater is important because it embodies two highly active fields of 

research: (1) offshore fresh groundwater reserves; and (2) submarine groundwater 

discharge (SGD). A significant portion of the world’s population lives within 100 km of a 

coastline (Nicholls and Small, 2002), and these communities are largely dependent on 

fresh groundwater. Recently, studies have shown that significant reserves of fresh 

groundwater exist in continental shelves which could be potentially used in the future 

(Bakken et al., 2012; Edmunds, 2001; Krantz et al., 2004; Manheim et al., 2004; Post et 

al., 2013).  The complex flow dynamics at the land-sea interface that control the 

distribution of fresh groundwater in continental shelves also drive SGD. SGD is defined 

as the flow of all water on continental margins from the seabed to the coastal ocean, 

regardless of fluid composition of driving force (Burnett et al., 2003). This flow is 

significant, and in the South Atlantic Bight (SAB) SGD is estimated to contribute three 

times more water to the coastal ocean than riverine input based on radium isotope 

budgets (Moore, 2010b). Studies on fresh groundwater reserves and SGD are both 
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concerned with the dynamics of the freshwater-saltwater interface (FSI). Numerous 

investigations have focused on the interface between land-derived fresh groundwater and 

saline groundwater from the late 1800’s to present (Abarca et al., 2013; Ataie-ashtiani et 

al., 1999; Bakhtyar et al., 2013; Boufadel, 2000; Cooper, 1959; Ghyben, 1889; R.E. 

Glover, 1959; Heiss and Michael, 2014; Henry, 1959; Herzberg, 1901; Kohout, 1964, 

1960, 1967; Robinson et al., 2006).  When studying coastal groundwater reserves, the FSI 

represents the dynamic boundary between available fresh groundwater and encroaching 

saline water. In SGD studies, the FSI is important because it provides an indicator for the 

degree of mixing between fresh groundwater and seawater (Galeati et al., 1992; Lebbe, 

1999; Yuqun Xue et al., 1995).  Furthermore, future sea-level rise driven by climate 

change will have significant impacts on the availability and sustainability of fresh 

groundwater reserves, as well as on the dynamics of SGD. A better understanding of the 

FSI and the impact sea-level rise will have on coastal groundwater systems is necessary 

to develop more comprehensive conceptual models for groundwater flow and SGD.  

 Bratton [2010] identified the need to categorize SGD concepts and processes by 

spatial scale in order to improve clarity and understand in the literature.  He classified 

SGD into three distinct spatial scales for passive margins: (1) the nearshore scale, which 

includes the surficial unconfined aquifer and extends offshore tens of meters; (2) the 

embayment scale, which includes the first major confined aquifer and its terminus, and 

extends offshore tens of kilometers; and (3) the shelf scale, which includes the total areal 

extent and thickness of permeable sediments on the continental shelf. As reviewed by 

Heiss and Michael [2014], the driving forces for SGD at the nearshore scale include 

freshwater discharge due to an inland hydraulic gradient, density-driven circulation at the 
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freshwater-saltwater interface, saltwater exchange driven by wave setup and swash 

infiltration, and tide-induced recirculation. Topographically driven regional flow in 

shallow confined aquifers beneath salt marshes and shallow offshore environment 

dominate SGD at the embayment scale (Bratton, 2010).   At the shelf scale, Moore and 

Wilson [2005] hypothesized that SGD fluxes are mostly driven by flushing of saline 

water shallow permeable shelf sediments. The proportion of SGD through shelf 

sediments that is driven by regional flow is relatively unknown. Significant SGD fluxes 

are also caused by geothermal convection which induce buoyancy-driven flow through 

the shelf (Hughes et al., 2007; Kohout, 1967; Wilson, 2003), sediment compaction 

(Santos et al., 2012) and thermohaline convection associated with salt domes (Wilson and 

Ruppel, 2007). Overall, the majority of the scientific investigations of coastal 

groundwater have focused on the nearshore and shelf scales. 

 Current conceptual models for the impact of sea-level rise on coastal groundwater 

and the FSI are either too idealized, focus on the shelf scale, or involve groundwater 

pumping (Fig. 4.1a). The potential effects of sea-level rise on embayment and nearshore 

scale coastal aquifers under natural conditions are poorly understood (Fig. 4.1b). Recent 

studies have focused on the position of the FSI far offshore in confined aquifers with 

respect to past or future sea-level rise. Using analytical solutions, Kooi and Groen [2001] 

predicted that ancient fresh or brackish water typically exists around the terminus of 

thick, low permeability confining units, tens of kilometers off shore. These results, along 

with other studies, suggest that the FSI in submarine aquifers is out of equilibrium with 

respect to modern sea-level (Hathaway, 1979; Kohout et al., 1977). Hughes et al. [ 2009] 

showed that under changing sea-level conditions, chloride concentrations were the last to 
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equilibrate after pressure and temperature. Werner and Simmons [2009] developed a 

simple conceptual framework to provide first-order assessments for sea-level rise and 

salinization of theoretical coastal aquifers that were either freshwater flux or head-

controlled systems. These results suggest that at steady state, systems with specified head 

boundary conditions are most susceptible to salinization. Michael et al. [2013] use similar 

criteria to assess the vulnerability of more realistic coastal groundwater systems to future 

sea-level rise. They showed that topography-limited systems, where the water table is 

essentially at land surface, are the most vulnerable to sea-level rise and make up 

approximately 70% of the world coastlines. Significant volumes of relatively fresh water 

have also been documented ~100 km offshore of the New England continental shelf 

(Hathaway, 1979; Kohout et al., 1988). Person et al. [2003] used a combination of 

analytical and numerical models to show that these plumes of fresh water offshore were 

most likely driven by elevated hydraulic gradients due to the Laurentide Ice Sheet and 

associated meltwater. Cohen et al. [2009] revisited this hypothesis with more detailed 

numerical models. They confirmed that these large reserves of fresh groundwater were 

most likely emplaced through enhanced recharge due to ice sheet loading, and facilitated 

by discharge through springs in submarine canyons. Offshore reserves of fresh 

groundwater also exist in the southeastern U.S. (Manheim, 1968), but they are too far 

south to have been impacted by ice sheet loading. These aquifers are topography-

controlled systems which suggests that increased meteoric recharge during sea-level low 

stands is insufficient as a sole explanation for the presence of offshore brackish/fresh 

plumes. The development and sustainability of these relatively fresh plumes in the 

continental shelf at low latitudes are poorly understood.  Finally, other studies have 
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focused on the combined effects of future sea-level rise and over extraction of 

groundwater (Loáiciga et al., 2011; Oude Essink et al., 2010). These studies showed that 

confined aquifers that are subject to over pumping experienced significant saline water 

intrusion with progressive sea-level rise. Aquifers at the embayment scale are not 

commonly used as groundwater resources (Bratton, 2010), and therefore the primary 

mechanism of salinization will probably not be saline water intrusion. Further 

investigation is required to understand the major drivers for salinization of both the 

nearshore aquifers and the confined aquifers of the embayment scale. Finally, additional 

knowledge pertaining to the extent of exchange between aquifers at the different scales of 

SGD and the dynamics of the freshwater-saltwater interface is required to develop a 

broad understanding of the potential impacts of future sea-level rise on coastal 

groundwater.  

 Conventional wisdom for groundwater flow at the land-sea interface assumes that 

multi-scale approaches will yield a more comprehensive understanding. Bratton [2010] 

identified the need to integrate the three spatial scales of SGD in order to more 

effectively address scientific and societal issues such as global sea-level rise and 

associated salinization of coastal aquifers. He also noted that due to compartmentalization 

created by stacked confining units and associated aquifers, SGD that spans multiple 

spatial scales is likely discontinuous. Further investigation is required to determine if 

SGD and related processes are in fact influenced by flow over multiple SGD scales 

through a compartmentalized system, or if the scales of SGD can effectively be studied 

independently. 



www.manaraa.com

 

92 
 

 The goal of this study is twofold: (1) to present a modern conceptual model for 

coastal groundwater flow, the distribution of salinity, and exchange across aquifers that 

spans the integrated embayment and nearshore scales; and (2) to investigate how this 

system will respond to predicted future sea-level rise driven by climactic warming. We 

used a combination of geologic coring, piezometer installation and monitoring, electrical 

resistivity tomography, and a two dimensional, variable-density, saturated-unsaturated, 

transient groundwater model to describe the embayment and nearshore scale SGD 

systems at Waccamaw Neck, SC. We then used projected rates of sea-level rise to model 

the effects of rising sea-level on groundwater flow and salinity distribution at the 

embayment and nearshore scale. 

4.3 Methods 

4.3.1 Field Methods 

We conducted our study at Waccamaw Neck, SC, a large peninsula between Winyah Bay 

and the Atlantic Ocean. This study focused mostly on a large relict beach terrain, 

commonly referred to as Baruch Island, and the adjacent North Inlet salt marsh (Fig. 

4.2a). This site was chosen because it provided remarkable access to embayment-scale 

aquifers that reach ~30 m below land surface, due to the presence of well-maintained dirt 

roads that extend out over the marsh. A unique challenge for studying SGD at the 

embayment scale is the difficulty and expense of drilling wells to reach the first major 

confined aquifer (10-30 m) in environments that are either inundated several times a day 

(intertidal wetlands), or permanently inundated (inner shelf). At North Inlet, SC, truck-

mounted drilling rigs can drive approximately 1.25 km out over the marsh.  
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The North Inlet salt marsh is located in Georgetown County, SC, and is bounded 

to the west by a low relief, forested, relict beach-ridge terrain that trends SW to NE 

(Baruch Island), to the south by Winyah Bay, and to the east by modern barrier islands 

(Gardner and Porter, 2001). North Inlet is part of the North Inlet-Winyah Bay National 

Estuarine Research Reserve, which encompasses about 32 km2 of tidally-dominated salt 

marsh and wetlands. The basin experiences a semidiurnal tide with an average range of 

1.5 m and a period of 12.4 hours.  

North Inlet basin evolved through  mid-Holocene time (~6500 years BP) as sea-

level gradually rose from a level at least 4 m lower than present (Gardner and Porter, 

2001). As seawater invaded low lying areas, marsh deposits transgressed over Late 

Pleistocene beach-ridge sediments and formed the modern distribution of intricate tidal 

creek systems within sub-basins that are separated by relict beach ridges (Gardner and 

Porter, 2001). This retrogradational sequence built the nearshore scale hydrostratigraphic 

framework, comprised of a sandy, confined aquifer under salt marsh mud, incised by tidal 

channels that drain the wetlands (Gardner and Porter, 2001; Thibodeau et al., 1998) (Fig. 

4.3).   

We determined the local stratigraphy to ~12 m below land surface through Auger 

drilling conducted by the South Carolina Department of Natural Resources (SCDNR). 10 

boreholes were drilled along the eastern forest-marsh boundary of Baruch Island and 2 

boreholes were drilled on Goat Island (Fig. 4.2b). Each borehole was drilled until refusal 

was met in limestone, which generally occurred 12 m below land surface. Sediment from 

each borehole was logged in the field with respect to color, grain size, sorting, rounding, 

matrix or clast support, and composition. The thickness of the limestone aquifer was 
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determined from inspection of the core collected from SCDNR borehole GEO-380, 

which fully penetrated the unit. All boreholes sampled along the forest-marsh boundary 

were fresh. Salinity will be reported here using the Practical Salinity Scale of 1978 

(UNESCO/ICES/SCOR/IAPSO, 1981), in which the salinity of fresh water is 0 and the 

salinity of seawater is 35. 

We determined the distribution of groundwater salinity at North Inlet using 

Wenner array resistivity surveys using an AGI Super Sting R1 IP automatic switcchbox 

and 28 electrodes. In order to achieve maximum electrical penetration, surveys were 

conducted on dry ground when possible and were powered using dual 12-volt batteries, 

wired in parallel. Resistivity surveys 270 m long were conducted on relict beach-ridges 

along the long-axis of Bly and Goat Island (Fig. 4.2b). We used an electrode spacing of 

10 m with a target depth resolution of approximately 30 m. An additional 135 m 

resistivity array was measured in Crabhaul Creek Basin near transect D, which has been 

detailed in numerous investigations (Gardner and Porter, 2001; Gardner and Reeves, 

2002; Thibodeau et al., 1998) (Fig. 4.2b). In order to compensate for the attenuation of 

signal in saturated saline marsh sediment in Crabhaul Creek basin, we used a waterproof 

electrode cable with spacing of 5 m and a target depth resolution of approximately 15 m. 

Inverse modeling was conducted using AGI EarthImager 2D to convert measured 

apparent resistivity from the field to spatially correct resistivity cross-sections (AGI, 

2009). These cross-sections were used to develop an initial conceptual model for local 

stratigraphy and groundwater salinity distribution. 

A broad hydrostratigraphic framework was developed from the integration of the 

electrical resistivity results, borehole sediment logs and shallow stratigraphic data from 
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Thibodeau et al. [1998] and Gardner and Porter [2001]  (Fig. 4.3). In general, a 

continuous, unconfined sand aquifer on the main upland and relict beach-ridge became a 

confined sand aquifer under the marsh basins, where the aquifer was typically capped by 

1-2 m of marsh mud. We will refer to this aquifer as the marsh aquifer. Below the marsh 

aquifer, a silty, matrix supported shell-hash layer, approximately 3 m thick acted as a 

confining unit for an underlying continuous, silty-sand confined aquifer. This confined 

aquifer was approximately 4 m thick and was present at depths of approximately -7 to -11 

m (MSL) (Fig. 4.3). We refer to this aquifer as the second confined aquifer. This aquifer 

was underlain by a dark-grey to black laminated clay and mudstone confining unit, 

referred to as the Lower Bridge Member, approximately 3 – 4 m thick.  Beneath this 

regionally continuous confining unit was a bioturbated, moldic limestone aquifer, 

referred to as the Chicora Member, that is approximately 17 – 18 m thick (Fig. 4.3). The 

combination of the two deepest hydrostratigraphic units described here is referred to as 

the Williamsburg Formation (Fig. 4.3). The Chicora Member aquifer is underlain by low 

permeability silt and mudstones of the Crouch Branch confining unit (not shown). 

Topography was obtained from the 2005 Georgetown County lidar dataset (GIS 

Department, 2016). 

This hydrostratigraphic framework was extrapolated offshore more than 10 km to 

capture the intersection of the Chicora Member aquifer with the seafloor. The Chicora 

was extended horizontally offshore because there was no significant dip measured 

between wells GEO-0385 and GEO-0387. Bathymetry was obtained from the Florida 

Fish and Wildlife Conservation Commission – Fish and Wildlife Research Institute at 

http://myfwc.com/research/ and National Oceanic and Atmospheric Administration 

http://myfwc.com/research/
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(NOAA) nautical charts (National Oceanic and Atmospheric Administration; National 

Ocean Service; Coast Survey, 2016). The regional relief ranges from a maximum 

elevation of 7.3 m (MSL) on Baruch Island to a minimum of -14.5 m (MSL) offshore. 

Four groundwater monitoring wells were installed at North Inlet by the SCDNR 

as a part of the South Carolina Long-Term Groundwater Monitoring Network. 

Monitoring wells were installed at two locations: (1) Goat Island, located at 33o20’06.08” 

N and 79o11’39.72” W; and (2) along Marsh Road on Baruch Island, located at 

33o20’28.40” N and 79o12’12.04” W (Figs. 4.2 and 4.3).  At each site, we targeted the 

second confined aquifer at approximately –7 m (MSL) and the Chicora Member 

limestone aquifer at approximately -14.5 m (MSL). The shallow wells had a screened 

interval of 0.61 m, and the deep wells had a screened interval of 1.5 m. All four 

monitoring wells were constructed using 4-inch diameter, Schedule-40, flush-joint PVC. 

After emplacement of the well into the borehole, the screened intervals were packed with 

filter sand. The remainder of the borehole was filled with a 5-ft plug of bentonite and 

grouted with cement to land surface.  At Goat Island, well GEO-0384 was screened at -

8.41 m (MSL) and well GEO-0385 was screened at -27.61 m (MSL). On Marsh Road, 

well GEO-0386 was screened at -10.36 m (MSL) and well GEO-0387 was screened at -

27.43 m (MSL). The wells were fully developed by blowing with air until a clear, sand 

free discharge was achieved. All four wells were then instrumented with an In-Situ Aqua 

TROLL conductivity logger and a Solinst Levelogger Edge water level logger, which 

continuously record data at 60 min intervals. A barometric pressure data logger was also 

installed at the Goat Island site used to correct recorded water levels.  

 



www.manaraa.com

 

97 
 

4.3.2 Numerical Methods 

Groundwater simulations of sea-level rise, tidally influenced flow and solute transport 

processes were conducted using SUTRA (Voss and Provost, 2002). SUTRA is a 2D, 

finite element groundwater transport model that simulates variable-density, saturated-

unsaturated fluid flow and transport of either energy or dissolved substances in the 

subsurface environment. Wilson and Gardner [2006] modified the governing Richards 

equation in SUTRA to account for changes in total stress associated with tidal loading: 

 

𝛻 ∙ [𝐾(𝛹)𝛻ℎ] = 𝑆𝑤𝑆𝑠
𝜕ℎ
𝜕𝜕

+ 𝜑 𝜕𝑆𝑤
𝜕𝜕

− 𝛼𝑠𝑆𝑤
𝜕𝜎𝑇
𝜕𝜕

   (4.1) 

 

where 𝐾 is hydraulic conductivity, 𝛹 is negative pressure head, ℎ is hydraulic head,  𝑆𝑤 

is water saturation, 𝜑 is porosity, 𝜎𝑇 is total stress and 𝑆𝑠 is the specific storage,  

𝑆𝑠 = 𝜌𝜌(𝛼𝑠 + 𝜑𝛽)   (4.2) 

where  𝜌 is the density of water, 𝜌 is gravity, 𝛼𝑠 is sediment compressibility and β is fluid 

compressibility.  

 The model domain extends 25 km from the Waccamaw River to the Atlantic 

Ocean inner continental shelf (Fig 4.4.). The model reaches ~2 km beyond the terminus 

of the Chicora Member aquifer to prevent boundary effects in the simulations. The 

bottom of the model domain represents the contact of the Chicora Member limestone 

with the Crouch Branch confining unit. 

 A 2D finite element mesh with 15,277 nodes and 14,256 elements was 

constructed using ModelMuse (Winston, 2014). All elements were 25 m in length and 
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ranged from approximately 4.5 m to less than 50 cm in depth. The mesh was refined near 

the surface of the model, where flow rates were the greatest, to ensure the Peclet and 

Courant criteria were met. An additional grid with 12.5 m spacing (32,534 nodes and 

30,512 elements) was used to test whether simulation results varied significantly with 

discretization.  The two meshes produced nearly identical results. All subsequent 

simulations were conducted using the 25 m grid to balance computational efficiency and 

accuracy of results.  

 Hydrologic parameters were chosen for 5 distinct hydrostratigraphic units (Table 

4.1): (1) fine grained sand; (2) marsh mud; (3) silty shell hash confining unit; (4) clay 

confining unit; and (5) limestone. Initial model permeabilities were assigned based on 

available field and modeling studies (Campbell and Coes, 2010; Hughes, 2016; Wilson et 

al., 2008). Layers with unknown permeabilities were calibrated manually using 

reasonable ranges for values based on sediment type (Freeze and Cherry, 1979). 

Permeability values for the confining units were determined iteratively by comparing 

simulated groundwater salinities to field measurements. The ratio of longitudinal to 

transverse dispersivity (αL/αT) was held constant at a value of 10, with αL equal to 10 m 

and αT equal to 1 m (Gelhar et al., 1992; Smith, 2004). Smaller dispersivity values (5, 0.5 

m) were tested on the 12.5 m discretization mesh, and the results were nearly identical.  

 Boundary conditions for the groundwater model were chosen to simulate transient 

groundwater flow and solute transport processes influenced by tidal forcing and sea-level 

rise (Fig. 4.4). The bottom and seaward vertical boundaries of the model domain were 

assigned a no-flow boundary condition. The landward vertical boundary was assigned a 

no-flow boundary above the Williamsburg and a specified hydraulic head boundary 



www.manaraa.com

 

99 
 

below.. Within the Williamsburg Formation, the landward boundary nodes were assigned 

a hydraulic head (3.2 m above MSL), calculated by projecting the average hydraulic 

gradient measured in the confined aquifer between wells GEO-0385 and GEO-0387 (2.76 

x 10-4 m/m). Surface nodes inundated by the Waccamaw River were assigned a specified 

hydraulic head equal to the average head of the river (0.33 m above MSL). The upper 

boundary landward of the Waccamaw River was assigned a combined specified fluid 

pressure and flux for every surface node. Areas that were inundated by the sea were 

assigned a pressure based on the weight of the overlying water column (Wilson and 

Gardner, 2006). Surface nodes that were not inundated by the sea were assigned 

boundary conditions depending on the saturation. Surface nodes with saturations less than 

one were assigned a specified fluid flux to simulate rainfall (QF), and surface nodes with 

saturations equal to one developed a seepage face (pressure equals zero). We did not 

simulate evapotranspiration in our model, which led to a slight under-approximation of 

salinity in the marsh basins.  

 Four sequential simulations were performed to investigate groundwater flow and 

solute transport associated with sea-level rise and tidal fluctuations. We simulated (1) 

past sea-level rise from 6.47 ka BP to present; (2) tidally-driven flow under modern 

conditions; (3) future sea-level rise from the present to the year 2100; and (4) tidally-

driven flow under conditions projected for 2100. We separated the sea-level rise and 

tidally-driven flow simulations to maximize computational efficiency. Small time steps 

are required to simulate tidally-driven flow. Attempting to simulate such small time steps 

over thousands of years led to infeasible total simulation times.  
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The initial simulation ran for 6,470 years, from the mid-Holocene to present, with 

1 month time steps. Sea-level was approximately -6.6 ± 1 m lower ~6.6 ka BP than the 

AD 1900 sea-level for the northern South Carolina coast (Engelhart and Horton, 2012; 

Gardner and Porter, 2001). Initial conditions were handled by assigning all nodes in the 

domain a hydraulic head equal to hydrostatic pressure. Initial conditions for salinity were 

assigned based on results from preliminary simulations in which the freshwater-saltwater 

interface in the Chicora aquifer was set at several distances seaward of the modern 

coastline, including a simulation where the initial salinity in the entire domain was set to 

0. These initial conditions reflect the fact that sea-level had been rising for thousands of 

years prior to the start of our simulation, and the position of the freshwater-saltwater 

interface 6.5 Kya was unknown. Results showed that position of the freshwater-saltwater 

interface was insensitive to the initial conditions, developing slightly seaward of the 

terminus of the Lower Bridge confining unit. Sea-level rose at a rate of 1.3 mm/year from 

6.6 ka BP to 4 ka BP and at a rate of 0.8 mm/year from 4 ka BP to AD 1900 (Engelhart 

and Horton, 2012). The results of this simulation were used as the initial conditions for 

the subsequent modern tidal simulation. 

 The second simulation incorporated tidal fluctuations and was used to investigate 

SGD and solute transport under modern conditions. A semi-diurnal lunar tide with an 

amplitude of 0.75 m and a period of 12.4 hours was imposed on the upper boundary 

seaward of Baruch Island. Mean sea-level was constant in this simulation, and a quasi-

equilibrium solution for salinity and pressure was reached after approximately 25 years. 

Time steps were 5 minutes long. Mean sea-level was set to 0.068 m, the average MSL of 

the tide data over the study period.   
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The impact of future sea-level rise on SGD was investigated by a third simulation 

of sea-level rise through the year 2100. Future rates of sea-level rise remain uncertain, so 

we simulated three sea-level rise scenarios based on predictions of Rahmstorf [2006; 

2012], using rates of sea-level rise of 4, 6 and 9 mm/yr. Simulations covered 100 years 

with time steps of 1 day. Mean sea-level rose from 0.068 to 0.468, 0.668, and 0.968 m, 

respectively, for the three separate sea-level rise scenarios. 

The final simulation included tidal fluctuations for conditions projected for the 

year 2100, to investigate future nearshore/embayment scale SGD after various rates of 

sea-level rise. Mean sea-level was constant in these simulations and a quasi-equilibrium 

solution for salinity and pressure was reached after approximately 25 year, using 5 

minute time steps. The amplitude and period of the tide remained the same.  

The total volume of groundwater discharging to the coastal ocean (SGD) and the 

total volume of seawater recirculation (SGR) were calculated in each simulation. We 

distinguished between the embayment and nearshore scales of SGD and SGR by dividing 

the surface nodes into two spatial categories: a salt marsh zone, which included all nodes 

from the forested upland-marsh boundary to the center of the seaward-most relict beach-

ridge, and an inner shelf zone, which included all nodes seaward of the marsh zone. Total 

volumes of SGD and SGR were calculated for the marsh and inner shelf zones in all 

simulations, with one exception. Volumes of SGD and SGR were not calculated for the 

salt marsh in the simulation of past sea-level rise because the salt marsh did not exist at 

its current location.  SGD and SGR were calculated for each time step by summing 

velocities in and out of surface elements and multiplying by porosity and element area. 

Fluxes in and out of the groundwater model were further grouped based on salinity. 
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Salinity was grouped using USGS guidelines, into fresh (0 to 1), brackish (1 to 10) and 

saline (>10). All recharge into the model at surface nodes that were not inundated by the 

ocean was fresh (rain). All recharging water at surface nodes inundated by the ocean was 

saline (35).  

Recent studies investigating the impact of accelerated sea-level rise on salt 

marshes have shown that the relative elevation of these marshes increases with the 

accretion of organic and inorganic material  (Baustian et al., 2012; Kirwan and Murray, 

2007; Morris et al., 2013, 2002). We chose not to include salt marsh accretion in our 

future sea-level rise groundwater models for simplicity and because we assumed the 

marsh in its current location would become fully inundated by the year 2100. Alizad et al. 

[2016] showed that a similar salt marsh system in northeastern Florida would be unable 

to keep up with rapid sea-level rise through the year 2080 using a coupled Marsh 

Equilibrium Model (Morris et al., 2002) and hydrodynamic-physical model. Therefore, 

although the marsh likely drowns prematurely in our models, our calculations of tidally-

driven flow are realistic for the year 2100. Additionally, the bathymetry of the shallow 

seafloor and hydrostratigraphy would be different in 2100 after continued erosion of the 

salt marsh, but flow in the second and third confined aquifers would be relatively 

unaffected.  

4.4 Field Results  

Electrical resistivity tomography surveys provided an initial conceptual model for the 

distribution of pore water salinity and hydrostratigraphy at North Inlet (Fig. 4.5a-c).  All 

three surveys showed a clear transition at approximately -12 m below land surface, from 

low (~1 Ohm-m) to moderate/high resistivities (15 – 100 Ohm-m; Fig. 4.5a-c). This 
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depth corresponds to the contact between the overlying unconsolidated sediments and the 

Lower Bridge confining unit. These results suggest that the Chicora Member aquifer 

transmits fresh groundwater at least 1.5 km from the mainland under the salt marsh.  

Hydraulic head data collected at each monitoring well were used to estimate the 

dominant groundwater flow direction and the magnitude of the hydraulic gradient. In 

general, the average hydraulic head in the second confined aquifer and the Chicora 

Member decreased across the transect from NW to SE (Table 4.2). The average hydraulic 

gradient in the second confined aquifer (GEO-0386 to GEO-0384) was -9.9 x 10-4 (m/m) 

and for the Chicora Member aquifer (GEO-0387 to GEO-0385) it was approximately -2.8 

x 10-4 (m/m). A tidal signal was present in every well except GEO-0386, which was 

located outside the tidal propagation distance in the second confined aquifer. The flow 

direction was always seaward between the two wells in the second confined aquifer. 

Groundwater flow was seaward in the Chicora aquifer at all times except high tide, when 

a weak positive hydraulic gradient (~6.0 x 10-6) drove groundwater landward for a short 

period of time (2-3 hours) twice daily.  

Groundwater salinities did not vary significantly in any well over the period of 

available data (7/15 – 1/16) (Table 4.2). Groundwater was fresh in all of the wells except 

in well GEO-0384 on Goat Island. A single in-situ measurement made at the location of 

well GEO-0384, 10 m below land surface, was taken during geoprobe collection. This 

measurement showed the salinity to be ~2.0 in the confined sand aquifer where we later 

screened GEO-0384. We also physically tasted the water sample to confirm it was fresh. 

Thereafter, groundwater salinity was continually monitored in-situ in the well, and the 
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average salinity was 50 (Table 4.2). We used the numerical model to further investigate 

groundwater salinity at this location.  

4.5 Numerical Results 

4.5.1 Model Calibration.  

We calibrated the model to salinity data collected from the resistivity surveys and to 

observed salinity, hydraulic head, and tidal amplitude in the four monitoring wells. In the 

second confined and Chicora Member aquifers, we matched tidal amplitude, which 

decreased with decreasing permeability, and matched hydraulic head, which increased 

with decreasing permeability. We found a permeability of 5 x 10-12 m2 to best match the 

data from wells GEO-0384 and 0386 in the second confined aquifer. The hydraulic head 

was less sensitive to the permeability of the Chicora Member, where the hydraulic head 

was very near steady-state. In general, the hydraulic gradient between wells GEO-0385 

and 0387 increased with decreasing values of permeability. Permeability values in the 

Chicora Member were constrained to between 1 x 10-11 and 5 x 10-12 m2. Simulation 

results are reported for both values. 

The model was able to accurately reproduce measured groundwater salinity and 

hydraulic head in wells GEO-0385, 0386, and 0387. The model was unable to reproduce 

saline groundwater conditions measured under Goat Island, in well GEO-0384, under 

reasonable hydraulic circumstances. To accurately simulate the hydraulic head measured 

on Goat Island, rates of precipitation always dictated that groundwater here was fresh. 

These simulated fresh groundwater results matched the in-situ salinity data we collected 

from the geoprobe core and the resistivity results for Goat Island (Table 4.2; Fig. 4.4c).  
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4.5.2 Model Results 

Our results suggest that the nearshore and embayment scale SGD systems at Waccamaw 

Neck are hydraulically independent. The presence of a 3-4 m thick confining unit 

prevented groundwater exchange between the Chicora Member confined aquifer and the 

overlying permeable sediments over the time scales investigated in this study (Fig. 4.6). 

Diffusion was the dominant mechanism for solute transport across the nearshore and 

embayment scale aquifers. Although the average flow direction was upward in the Lower 

Bridge confining unit, the average velocity was approximately 0.001-0.002 m/yr over the 

all the simulations, too slow to counteract diffusion (Fig. 4.6). Due to the lack of 

groundwater exchange between the nearshore and embayment scale SGD systems, flow 

and salinity configuration at these two scales reacted differently to driving forces such as 

tidal fluctuations and sea-level rise. 

Groundwater flow paths were variable between the nearshore and embayment scale 

SGD systems. In the salt marsh zone, flow under modern and future conditions was 

controlled mostly by tidal fluctuations and flow divides set up by local topography. 

Above the Lower Bridge Member confining unit, all meteoric groundwater from the 

upland generally discharged to the nearest tidal creeks (Fig. 4.6). Seawater that infiltrated 

the salt marsh basins circulated through the marsh aquifer then also discharged to the 

tidal creeks (Fig. 4.6). Above the Lower Bridge confining unit, each salt marsh basin and 

nearby uplands were isolated systems, with little or no hydraulic connection to adjacent 

groundwater systems (Fig. 4.6). For the nearshore scale, groundwater salinity increased 

in the entire salt marsh basin due to increased exchange with the seawater at high tide. 

Groundwater flow in the Chicora Member aquifer was mostly unaffected by tidal 
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fluctuations.  The only change was that the direction of the hydraulic gradient reversed 

for a short period of time (2-3 hours) below areas that were inundated at high tide (Fig. 

4.7b-c), but the net effect of this twice-daily flow reversal was not significant with 

respect to the dominant flow pattern. Groundwater generally flowed from the landward 

boundary of the model out to sea. Different driving forces for flow between the nearshore 

and embayment-scale led to significant spatial variability in the distribution of salinity.   

Simulations of groundwater flow during past and future sea-level rise showed that 

multiple freshwater-saltwater interfaces developed at different scales (Fig. 4.7). Over the 

late Holocene, salt water intruded into the entire section of sediments above the Lower 

Bridge confining unit between x = 6,250 and 17,500 m (Fig. 4.7c). The nearshore-scale 

aquifers were highly susceptible to progressive saline water intrusion and subsequent 

landward migration of the FSI. Sea-level rise through the Holocene was insufficient to 

drive significant saline water intrusion into the Chicora Member confined aquifer. 

Instead, fresh groundwater continually flowed seaward along the regional hydraulic 

gradient, maintaining the position of the offshore FSI (Fig. 4.7e). Salinization of the 

Chicora Member aquifer occurred by diffusion over thousands of years. This diffusion of 

salt into the fresh Chicora aquifer created a complex lateral transition zone of salinities in 

the Chicora Member from land to sea (Fig. 4.7b-e). At the conclusion of the past sea-

level rise simulation, groundwater was fresh to brackish (0.5 – 8) in the Chicora Member 

in the landward 11 km of the domain (Fig. 4.7a-c). The Chicora Member contained saline 

water (> 10) under the ocean from x = 11 to 18 km (Fig. 4.7c-d). Seaward of this saline 

zone, brackish groundwater discharged from the confined aquifer into the coastal ocean 

in a large, dispersed plume extending from x = 18.5 to 22 km (Fig. 4.7e). This discharge 
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zone corresponded with the terminus of the Lower Bridge confining unit. Seaward of this 

zone was a classic FSI where density-driven convection caused seawater to circulate 

through the Chicora Member aquifer (Fig. 4.7e). Simulations of sea-level rise through the 

year 2100 showed that the nearshore scale continued to be highly susceptible to saline 

water intrusion (Fig 4.8a-b). Salinization of the permeable sediments above the Lower 

Bridge confining unit was geologically instantaneous with respect to the three rates of 

predicted sea-level rise (4, 6 and 9 mm/yr). The width of relict beach ridges decreased as 

mean sea level increased, which decreased the surface area for meteoric recharge into the 

marsh. Groundwater salinity increased significantly for the entire salt marsh basin. The 

total thickness of freshwater lenses beneath the uplands in the salt marsh decreased, and 

the position of the freshwater-saltwater interface above the Lower Bridge confining unit 

migrated landward an average of 354 m, from Bly Creek to the forest-marsh boundary of 

Baruch Island (Fig. 4.8a-b). The Chicora Member aquifer was mostly unsusceptible to 

salinization under natural conditions. Groundwater salinity in the Chicora Member only 

increased slightly beneath the marsh basin, where diffusion transported salts from the 

overlying sediments (Fig. 4.8b). Groundwater flow stagnated here due to density-driven 

convection caused by differences in groundwater salinity (Fig. 4.8b). Fresh groundwater 

was unable to make it under the marsh further than x = 6250 m (Bly Island).  

The extent of hydraulic independence between the nearshore and embayment scale 

aquifers can be further investigating by examining fluxes of SGD and SGR (Tables 4.3 

and 4.4). For the salt marsh zone, modern tidal fluctuations drove about 84% of the total 

SGR flux and 35% of the total SGD flux. Tidal fluctuations under future projected 

conditions in the salt marsh drove an average of 40% of the total SGR flux and an 
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average of 22% of the total SGD flux. Our results showed that SGR decreased by 16%, 

27%, and 29% for the respective future mean sea-level elevations compared to modern 

conditions (0.47, 0.67, 0.97 m).  Total SGD decreased by 24%, 34%, and 43% 

respectively (Table 4.3; Fig. 4.9a). At the nearshore scale, rising sea-level decreased both 

SGR/SGD, as well as the proportion of flow driven by tidal fluctuations. These results 

assumed that the salt marsh could not accrete fast enough to keep up with rising sea-level. 

The majority of the salt marsh platform did not drain during low tide when mean sea-

level was greater than 0.67 m. This zone required daily flooding and draining by the tide 

to support hydraulic gradients that drove significant fluxes of SGD and SGR. For the 

inner shelf zone, tidal fluctuations did not drive significant fluxes of SGR/SGD except 

where tidally-driven recirculation occurred in newly inundated land surface. The regional 

hydraulic gradient was the primary driving force for groundwater flow at the embayment 

scale under modern and future conditions. In contrast to the salt marsh zone, SGR and 

SGD were higher for future conditions in the inner shelf zone (Table 4.4; Fig. 4.9b). 

Comparing between modern and future conditions, SGR increased slightly. These 

increases were driven by flow through newly inundated land surface, and by slightly 

higher rates of flow at the offshore FSI associated with density-driven convection. 

The total volumes of SGR/SGD and the proportion of fresh to saline groundwater 

were highly variable between the nearshore and embayment scales. Under modern 

conditions, the salt marsh zone contributed about an order of magnitude more SGD to the 

ocean than the inner shelf zone (Tables 4.3 and 4.4). Approximately 31% of the total 

SGD from the salt marsh was fresh (Fig. 4.9a). By the year 2100, the salt marsh 

contributed only about 5 times more SGD to the ocean than the inner shelf zone. The 
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total proportion of the salt marsh SGD that was fresh decreased to 12% (Fig. 4.9a). For 

the inner shelf zone, a significant shift from a majority of fresh SGD (84%) during past 

sea-level rise to present to a majority of saline SGD for future sea-level rise (64%) 

occurred (Table 4.4; Fig. 4.9b). This pattern suggests that total embayment scale SGD is 

mostly fresh during initial transgression and progressively becomes saltier through 

continued sea-level rise over thousands of years. Comparing between the salt marsh and 

inner shelf zones, the total proportion of fresh SGD is much larger for the inner shelf 

zone under present and future conditions. Fresh groundwater that discharged from the 

embayment scale aquifers was also significantly older than fresh groundwater that 

discharged from the salt marsh.  

Estimates of residence times for the nearshore and embayment scales under North 

Inlet emphasize their hydraulic independence. Under modern conditions, average flow 

rates for the salt marsh and second confined aquifer were approximately 20 m/yr. 

Groundwater paths under the salt marsh basin were heavily influenced by local flow 

divides, which generally prevented groundwater from flowing more than 100-200 m. 

Using these approximations, we calculated an estimate for the residence time of the 

nearshore-scale aquifers to be on the order of tens of years. In the Chicora Member 

aquifer, average flow rates were approximately 2 m/yr, and groundwater flowed 

horizontally approximately 22 km before discharging to the sea. These approximations 

indicate residence time estimates for the embayment scale system to be on the order of 

tens of thousands of years. This indicates that groundwater flow and solute transport 

processes are likely out of equilibrium with modern sea-level at the embayment scale. 
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Our results suggest that the brackish groundwater plume located near the terminus of 

the Lower Bridge confining unit was remnant from the previous FSI and associated sea-

level low stand. Although the permeability of the Chicora Member confined aquifer is 

relatively high, the hydraulic gradient that drives flow is low. Slow groundwater flow 

rates resulted in a salinity configuration that is out of equilibrium with modern hydrologic 

conditions. This offshore brackish plume was unable to discharge to the ocean as fast as 

sea-level rose over the Holocene, resulting in an isolated plume that is no longer 

resupplied with fresh groundwater from the mainland under modern conditions. 

Continual diffusion of salt into the Chicora Member aquifer beneath the salt marsh and 

shallow nearshore environment prevented fresh groundwater from flowing out to sea 

without becoming significantly saltier. The brackish groundwater plume continued to 

slowly discharge to the ocean through the year 2100, decreasing in width approximately 

175 m, to a total width of about 3 km.   

4.6 Discussion 

Our simulations indicate that groundwater flow and solute transport processes are 

different between the nearshore and embayment scale. With respect to sea-level rise and 

tidal fluctuations, we found the nearshore scale to be much more sensitive. Future sea-

level rise did not drive significant salinization of the embayment scale aquifer. The 

embayment scale was largely independent from the overlying nearshore scale. This 

hydraulic independence is important because it suggests that investigations of SGD do 

not necessarily need to be spatially integrated to achieve a more comprehensive 

understanding. Groundwater studies that focus on one scale of SGD need not include the 

potential effects of the underlying/overlying scales of SGD. In our simulations, no 
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significant groundwater exchange occurred between the aquifers of the nearshore and 

embayment scales due to a thick confining unit. SGD fluxes calculated in our study are in 

close agreement with those from prior investigations at North Inlet salt marsh.   

For the modern tidal simulations, we calculated a SGD flux of approximately 298 

L/m2/yr. Wilson and Morris [2010] calculated a range of SGD fluxes at North Inlet of 

between 0.44 to 8.4 L/m2 per tide, equal to 321.2 to 6132 L/m2/yr. Our results fall on the 

low side of this reported range likely because our model was a two-dimensional transect 

through the salt marsh. Our SGD/SGR fluxes were calculated over the entire horizontal 

extent of the salt marsh basin across the transect. We calculated an average SGD flux 

specific to the tide creeks in our groundwater model of 0.15 m3 per meter of creek bank 

per tidal cycle. Using the marsh island creek density at North Inlet of 0.013 m/m2 

(Novakowski et al., 2004), we calculated an SGD flux of ~4.3 L/m2 per tide, equal to 

3139 L/m2/yr. Adjusted for tide creek density at North Inlet, our SGD flux is in close 

agreement with the values reported by both Morris [1995] (~5 L/m2 per tide) and Krest et 

al. [2000] (10-20 L/m2 per tide).  

Modern groundwater simulations and the respective flux of SGD at the embayment 

scale can be used to estimate the proportion of total SGD through the inner shelf that is 

caused by regional flow and density-driven convection. Moore [2010a] calculated SGD 

fluxes to the South Atlantic Bight (SAB) using radium isotope fluxes and concentrations 

of radium in coastal groundwater. He showed that in order to support measured radium 

isotope activities, a SGD flux of ~2.1 x 1014 L/yr was required. He assumed a coastline 

length of 600 km, and an approximate shelf width of 100 km, resulting in a normalized 

SGD flux of 3500 L/m2/yr to the South Atlantic Bight. He suggested that this flux could 
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be generated by flushing a layer of sand 2 m thick continuous across the entire shelf. This 

reservoir must be flushed 3 times a year, requiring an average upward flow rate of 5 m/yr 

(Moore, 2010b). Our simulations predict an approximate SGD flux of 32 L/m2/yr, equal 

to ~365 m3/m/yr to the SAB. This flux is less than 1% of the SGD flux calculated by 

Moore [2010a]. Upward flow velocities of 4-7 m/yr were located in the offshore brackish 

discharge zone, but flow velocities were minimal for the remainder of the inner shelf. 

Also, fresh or relatively brackish groundwater cannot carry significant concentrations of 

radium. Our model only extended 15 km offshore, instead of 100 km, and only contained 

the first major regional confined aquifer. A full shelf-scale model would lead to higher 

calculated SGD fluxes, but it’s improbable they would increase by ~10,000% to 3.5 

m3/m2/yr. The coastal aquifers in this region are high-permeability systems, but the 

regional hydraulic gradients are very low at the embayment scale. Hydraulic gradients 

could be more significant in the deeper, regional confined aquifers, but these aquifers are 

the principal drinking water aquifers in the Southeastern United States. These systems 

suffer from significant over-pumping and associated cones of depression, and likely do 

not drive high fluxes of SGD to the coastal ocean. Our results strongly support the 

hypothesis that episodic flushing through surficial sands on the shelf is the most 

significant driver for SGD through the shelf.   

A revised conceptual model for integrated nearshore/embayment scale SGD is 

presented in Figure 4.10. At the nearshore scale, SGD and SGR are driven mostly by 

waves, lunar tides, seasonal variations in mean sea-level and density-driven convection. 

Meteoric water and seawater infiltrate the surficial, unconfined aquifer and mix across 

local freshwater-saltwater interfaces.  We estimate the nearshore scale SGD flux (per unit 
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area) to be at least an order of magnitude greater than embayment scale SGD flux. 

Groundwater flow and solute transport in the nearshore scale are independent from the 

aquifers of the embayment scale. Groundwater pressure and the distribution of salinity at 

the nearshore scale require time scales of tens of years to reach quasi-equilibrium. At the 

embayment scale, equilibrium likely requires time scales of tens of thousands of years.  

SGD is driven by hydraulic gradients associated with changes in regional topography. 

SGR is caused mostly by density-driven convection across major freshwater-saltwater 

interfaces (Fig. 4.10). Meteoric water recharges these confined aquifers up-dip where 

they outcrop on land, and groundwater flows continually seaward along a steady gradient. 

Low hydraulic gradients drive groundwater flow under the nearshore and inner shelf 

environments at velocities on the order of tens of centimeters to a couple meters per year. 

At the embayment scale for the Southeastern U.S., the first major confined aquifer 

(Chicora Member: ~55 Ma; Floridan Aquifer: 20 – 60 Ma) most likely predates the most 

recent sea-level transgression (~10,000 Kya to present). These aquifers have been 

influenced by continued sea-level rise over the Holocene, but have not been subjected to 

direct saline water intrusion for millions of years. Salinization of these aquifers occurs 

through slow diffusion from adjacent salty sediments (Fig. 4.10). The low hydraulic 

gradients of these systems prevent fresh groundwater from the mainland from flowing 

directly out to sea unaltered. Instead, this freshwater mixes with salts diffusing from 

adjacent aquifers, and creates a large brackish-to-saline plume of groundwater that 

undergoes slight density-driven convection, which reduces the magnitude of the 

hydraulic gradient out to sea. Further seaward, a plume of fresh-to-brackish paleo-

groundwater discharges at the terminus of the embayment scale confining unit (Fig. 
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4.10). This paleowater discharge zone has been identified offshore of the Northeastern 

U.S. (Cohen et al., 2010; Person et al., 2003), and in analytical studies of the continuation 

of SGD systems offshore (Kooi and Groen, 2001).  

A significant difficulty in studying SGD at both the embayment and shelf scales is 

uncertainty surrounding the underlying stratigraphy and geologic variability. Our results 

confirm that breaks in confining units control the outflow point for fresh groundwater. 

The location of major breaks in underlying confining units, as well as their terminuses, 

could be determined using tow-behind electrical resistivity tomography. Long, wide, 

shore-parallel plumes of high resistivity could likely signal the terminus of these major 

confining units offshore. Anomalous plumes of high resistivity would likely demarcate 

breaks in confining units. Determining the offshore extent and integrity of the major 

confining units of coastal aquifers would greatly aid in developing more accurate 

groundwater models and SGD studies in general. Locating offshore plumes of fresh or 

brackish groundwater bodies could also be helpful to mitigate future pressures on 

drinking water supply. 

The depletion of potable groundwater in coastal communities is a major concern for 

many coastal communities due to accelerated rates of sea-level rise and continued over-

pumping of principal groundwater aquifers. Several studies have begun to identify 

potential sources of fresh/brackish groundwater that could be exploited to mitigate future 

drinking water shortages (National Research Council, 2008; Post et al., 2013). Our results 

suggest that embayment scale aquifers that are not currently over-pumped could have 

significant volumes of fresh or brackish volumes 10-50 km offshore. These plumes have 

a much lower salinity than seawater, and would be much less expensive to treat and 
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process (Bakken et al., 2012). Our model suggests a total volume of about 1.6 x 104 m3 

per meter of coastline of slightly brackish groundwater offshore. Using a shore length of 

approximately 600 km and an average porosity of 30%, a rough, upper-bound estimate 

for the total volume of this offshore fresh/brackish plume in the South Atlantic Bight is 

96 km3.  For reference, the total U.S. water demand in 2010 was about 1.3 km3/day (355 

billion gallons per day) (Maupin et al., 2010). After simulating sea-level rise through the 

year 2100, this zone only decreased in width by approximately 5%, implying these paleo-

groundwater reserves could be a significant source of potable water in the future.  

4.7   Conclusion 

Our results indicate that SGD and solute transport are complex processes at the land-sea 

interface. Groundwater systems at the nearshore and embayment scales were not in 

significant hydraulic communication due to the presence of the Lower Bridge confining 

unit. As a result, the dominant driving forces for groundwater flow were largely different 

between the two scales. At the nearshore scale, SGD and SGR were controlled by tidal 

pumping and variations in mean sea-level. At the embayment scale, SGD and SGR were 

mostly driven by the regional hydraulic gradient and density-driven convection through 

zones of differing salinity. Groundwater systems at the nearshore scale contributed an 

order of magnitude more SGD to the coastal ocean per unit area than those at the 

embayment scale.  SGD at the embayment scale was concentrated at the terminus of the 

Lower Bridge confining unit offshore. Estimates for groundwater residence times at the 

nearshore scale were on the order of tens of years. At the embayment scale, residence 

times were estimated to be on the order of tens of thousands of years. Due to the 
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hydraulic independence between the nearshore and embayment scales, the impact of 

future sea-level rise was variable between the two.  

 Salinization driven by sea-level rise was much more significant at the nearshore 

scale than at the embayment scale. At the nearshore scale, salinization of the shallow 

aquifers was driven by progressive saline water intrusion that tracked with sea-level rise. 

By the year 2100, the entire North Inlet salt marsh system was salty. The dominant 

mechanism for salt transport into the Chicora Member aquifer was diffusion over 

thousands of years. Salinity was largely unchanged in the Chicora Member aquifer after 

future sea-level rise, except directly under the salt marsh where salinity increased 

slightly.  The distribution of salinity in the Chicora Member aquifer was out of 

equilibrium with modern sea-level. Total fluxes of SGD and SGR decreased with 

increasing sea-level at the nearshore scale. The proportion of this flow that was driven by 

tidal fluctuations also decreased under future sea-level conditions at the nearshore scale. 

The total volume of fresh and brackish SGD decreased significantly under future sea-

level conditions. In general, SGD and SGR were not significantly impacted by future sea-

level rise at the embayment scale through the year 2100. The total volume of fresh SGD 

at the embayment scale decreased significantly from the mid Holocene to the year 2100.  

 Finally, our simulation results strongly suggest the presence of an offshore 

brackish plume of discharging groundwater is a remnant from the FSI during the last sea-

level lowstand. Although this reservoir of groundwater offshore of North Inlet, SC is 

purely theoretical, offshore plumes of fresh or brackish groundwater have been reported 

in the Atlantic continental margin in other studies. The possibility for significant volumes 

of easily-treatable groundwater at the embayment scale could help mitigate future 
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shortages of potable water in coastal communities as traditional aquifers become 

progressively more saline. Future studies investigating the integrity and extent of 

confining units and their potential to trap fresh or brackish paleo-groundwater offshore 

are warranted. 
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Table 4.1. Model parameters used for the North Inlet groundwater model. 

*Range of permeability values tested for each sediment unit 

  

Model Parameter Fine Sand Marsh Mud Silty Shell Hash Silty Clay 
(Lower Bridge Member) 

Limestone 
(Chicora Member) 

Porosity φ 0.4 0.72 0.4 0.35 0.3 

Permeability k (m2) 5 x 10-12 
(1 x 10-101 x 10-12)* 

4 x 10-13 

(1 x 10-13  –  1 x 10-15 )* 
1 x 10-13 

(1 x 10-13 – 1 x 10-15)* 
1 x 10-16 

(1 x 10-15 – 1 x 10-17) 
1 x 10-11 m2 

(1 x 10-11 – 5 x 10-13) 

Longitudinal  
Dispersivity αL (m) 10 10 10 10 10 

Transverse Dispersivity αT (m) 1 1 1 1 1 
Van Genuchten Fit 

Parameters m, n 0.875, 8 0.6, 2.5  
Never exposed 

Capillary Rise α (kPa-1) 2.05 x 10-4 3 x 10-3 
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Table 4.2. Hydraulic head and salinity data collected a North Inlet. 

Measured Data GEO – 0384 
(Goat Island) 

GEO – 0385 
(Goat Island) 

GEO – 0386 
(Marsh Road) 

GEO – 0387 
(Marsh Road) 

Average Hydraulic Head 
(m) 

Continuous logger 
(7/15 – 1/16) 

0.71 ± 0.12Ŧ 1.63 ± 0.21 1.77 ± 0.07 1.93 ± 0.09 

Average Salinity (PSU) 
Continuous logger 

(7/15 – 1/16) 
50.6 ± 0.2 0.59 ± 0.003 0.46 ± 0.01 0.48 ± 0.007 

Salinity Point Measurement 
(PSU) 

2.0* 

(2/5/14) 
0.5 

(1/27/16) 
0.5 

(1/27/16) 
0.3 

(1/27/16) 
*Salinity measured in-situ from a geoprobe core collected at approximately 10 m below land surface; at the exact location GEO-0384 was later 
installed. 
Ŧ Values presented here are the average and standard deviation of the observed data.  
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Table 4.3. Marsh zone groundwater fluxes for the various simulations. 
 

Flux 
(L/m2/yr) 

Tide 1 
(msl = 0.07 m) 

Sea-level rise 2 
(4 mm/yr) 

Sea-level rise 2 
(6 mm/yr) 

Sea-level rise 2 
(9 mm/yr) 

Tide 2 
(msl = 0.47 m) 

Tide 2 
(msl = 0.67 m) 

Tide 2 
(msl = 0.97 m) 

QF 211.1 151.8 144.9 130.5 146.8 125.1 104.5 
QSGR 96.2 44.2 41.5 39.7 80.7 70.2 68.5 
SGDF -91.1 -102.3 -97.9 -78.7 -25.1 -48.7 -3.28 
SGDB -47.1 -23.5 -19.3 -20.5 -39.0 -9.7 -24.8 
SGDS -159.6 -73.9 -72.5 -71.3 -161.3 -137.0 -142.6 
QTOT 307.3 195.9 186.4 170.21 227.5 195.3 173.0 

SGDTOT -297.8 -199.7 -189.7 -170.6 -225.4 -195.5 -170.9 
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Table 4.4. Inner shelf groundwater fluxes for the various simulations. 

Flux (L/m2/yr) Sea-level rise 1 Ŧ Tide 1Ŧ  Sea-level rise 2* Tide 2* 

QF 31.5 ± 0.02 31.9 ± 0.001 29.8 ± 0.06 28.5 ± 0.003 
QSGR 2.46 ± 0.51 11.2 ± 0.48 9.09 ± 2.5 14.9 ± 1.6 
SGDF -21.1 ± 0.01 -10.1 ± 0.001 -9.54 ± 0.07 -10.1 ± 0.001 
SGDB -0.31 ± 0.08 -3.53 ± 0.003 -2.16 ± 0.13 -2.81 ± 0.003 
SGDS -3.56 ± 0.60 -18.7 ± 0.54 -16.9 ± 2.6 -22.9 ± 1.7 
QTOT 33.8 ± 0.53 43.1 ± 0.48 38.9 ± 2.6 43.4 ± 1.6 

SGDTOT -25.0 ± 0.69 -32.4 ± 0.54 -28.6 ± 2.7 -35.8 ± 1.7 
ŦValues presented here are the average and standard deviation of the results from the simulations using 
 Chicora Member permeabilities of 1 x 10-11 and 5 x 10-12 m2. 
*Values presented here are the average and standard deviation of the results from three separate sea-level 
rise scenarios, using the two Chicora permeabilities listed above. 
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Figure 4.1. a) Conceptual model for saline water intrusion (SWI) due to the combined effects of sea-level rise and over pumping from 
a water supply well. Seawater intrudes the shallow aquifers of the nearshore scale as sea-level progressively rises. In the major 
confined aquifers, hydraulic head drops due to over withdrawal of groundwater, causing the freshwater-saltwater interface to migrate 
landward as saline water intrudes the fresh aquifer. b) Hypothesized effects of sea-level rise on coastal groundwater in a system not 
subject to over pumping.   
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Figure 4.2. a) North Inlet site location map. b) North Inlet salt marsh basin and the location of groundwater wells, coreholes and 
resistivity surveys.  
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Figure 4.3.  North Inlet hydrostratigraphy and the location of the four groundwater wells (GEO – 0384, 0385, 0386 and 0387). 
Vertical exaggeration is approximately 100x.  
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Figure 4.4. Model domain, boundary conditions, and salinity initial conditions. Vertical exaggeration is approximately 100x. 
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Figure 4.5. Electrical resistivity tomography surveys collected at a) the Crabhaul Creek 
Basin, b) Bly Island and c) Goat Island. Warm colors indicate low apparent resistivities, 
and therefore saline groundwater. Cool colors indicate high apparent resistivities, and 
therefore fresh groundwater 
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Figure 4.6. Tidally-averaged groundwater flow velocity under modern conditions for the North Inlet salt marsh. This panel represents 
a single 5 km sub-section of the model domain. Vertical exaggeration = 20x. 
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Figure 4.7. North Inlet groundwater model results for salinity and flow directions, averaged over a tidal cycle. Arrows indicate flow 
direction. Vertical exaggeration = 20x. Panels a-e display the entire length of the groundwater model segmented into 5000 m intervals 
from Northwest to Southeast. 



www.manaraa.com

 

 
 

129 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. North Inlet groundwater model results for salinity and tidally-averaged flow directions in the marsh zone. a) Present day 
conditions.  b) Year 2100, after sea-level rise of 6 mm/yr. Vertical exaggeration = 20x. 
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Figure 4.9. Groundwater fluxes in the marsh and inner shelf zones. a) Marsh zone: 
modern and future tidal simulations with mean sea-level elevations of 0.07, 0.47, 0.67 
and 0.97 m. b) Inner shelf zone: past sea level rise (6.47 Kya) and the average of three 
future sea level rise scenarios (4, 6 and 9 mm/yr).
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Figure 4.10. Conceptual model for integrated nearshore-embayment scale SGD for passive margins. Groundwater systems at these 
two scales are essentially independent. Exchange between the nearshore scale and the embayment scale is driven by diffusion over 
long time periods. A brackish paleowater plume exists near the terminus of major confining units and slowly discharges to the ocean.
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Chapter 5 

Conclusions 

Coastal groundwater is a substantial topic of discussion in the modern scientific 

community due to the wide range of issues central to the field. Fresh groundwater 

reserves in aquifers within continental shelves have been well documented and purported 

as a future potential resource for coastal communities. The dynamics of submarine 

groundwater discharge and the associated freshwater-saltwater interface are also highly 

active research questions within the coastal groundwater discipline. The goal of this 

dissertation was to investigate groundwater flow systems and solute transport processes 

at both the nearshore and embayment scales so that a more comprehensive understanding 

of groundwater dynamics at the land-sea interface is possible. This final chapter provides 

a summary of the findings of the three separate studies that comprise this dissertation.  

 In the second chapter of this dissertation, I examined the effects of varying 

hydrologic parameters on the strength of the upper saline plume and rates of seawater 

recirculation in theoretical beaches. My results show that the upper saline plume may be 

an uncommon phenomenon that only occurs in beaches with a specific combination of 

hydraulic conductivity, fresh groundwater flux and beach slope. The strongest upper 

saline plumes develop in beaches with steeper slopes, higher influx of fresh groundwater, 

and hydraulic conductivities equal to 10 m/d. Median grain sediment size of the beach is 

strongly correlated to both hydraulic conductivity and beach slope, and therefore the 

strength of the upper saline plume. Finally, this study hypothesized that a field based 
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measurement of a saline plume salinity gradient (SPSG) could be used to provide first-

order estimates of rates of tidally and density-driven recirculation in the beach aquifer.  

 In the third chapter of this dissertation, I compared submarine groundwater 

discharge and solute transport processes in a real beach on a transgressive barrier island 

to results from the previous theoretical study in chapter two. I found that the inclusion of 

real beach heterogeneity drove important deviations from predictions based on 

conceptual models using theoretical beach studies. The strength of the upper saline plume 

under Cabretta Beach was stronger than anticipated due to the presence of a buried mud 

layer in the beach. Saline water infiltration was greater during neap tides than spring tides 

due to variations in the beach profile. The strength of the upper saline plume was greatest 

during spring tides. Finally, I showed that field measurements of salinity gradients 

(SPSG) under the beach can be used to estimate rates of tidally and density driven 

recirculation in the beach aquifer. My results also indicated that several biogeochemical 

cycles recently investigated at Cabretta Beach were heavily influenced by groundwater 

flow.

 In the fourth chapter of this dissertation, I developed a conceptual model for 

groundwater flow and the configuration of the freshwater-saltwater interface that spanned 

both the nearshore and embayment scales. I then tested how this system would respond to 

future predicted rates of sea-level rise. I showed that the nearshore and embayment scale 

aquifers were hydraulically independent. As a result, these systems responded very 

differently to forces such as tidal fluctuations and sea-level rise. A complex distribution 

of groundwater salinity developed in the first major confined aquifer (Chicora Member) 

which was driven by sea-level rise and slow diffusion over the mid to late Holocene. 
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Additionally, a plume of brackish paleo-groundwater discharged at the terminus of the 

Lower Bridge confining unit offshore. Simulations including modern tidal fluctuations 

showed that the nearshore scale SGD system contributed much higher fluxes of water to 

the ocean than the embayment scale. The North Inlet salt marsh contributed a SGD flux 

approximately 298 L/m2/yr to the coastal ocean. The inner shelf contributed only about 

25 L/m2/yr (~365 m3/m/yr). Finally, I showed that the nearshore scale system was highly 

susceptible to predicted rates of future sea-level rise and associated salinization. The 

embayment scale was largely unaffected by future sea-level rise. Fluxes of SGD and SGR 

decreased under future sea-level conditions at the nearshore scale and were relatively 

constant at the embayment scale.  

 Finally, this dissertation aimed to provide a more comprehensive understanding of 

the complex mechanisms for groundwater flow and solute transport at the land-sea 

interface. Specifically, the focus of this work was to investigate the interplay between the 

configuration of the freshwater-saltwater interface and groundwater flow at multiple 

spatial scales in both theoretical and field-based studies. My results indicate that 

groundwater flow and the associated solute transport are largely independent with respect 

to spatial scale. In general, groundwater systems at the nearshore scale did no undergo 

significant exchange with the embayment or shelf scales. In the unconfined, surficial 

aquifer, the configuration of the freshwater-saltwater interface was mostly controlled by 

the geomorphology of the beach and hydrologic properties of the local groundwater 

system. Studies investigating hydrology and geochemical processes in beaches and 

marshes can safely assume the impacts of the larger scale SGD systems in that 

environment are insignificant. Groundwater flow at the embayment scale likely has 
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residence times that are three to four orders of magnitude higher than flow in the shallow 

subsurface. As a result, the dominant drivers for flow and the potential impacts of future 

sea-level rise are variable with respect to spatial scale. For example, this work indicates 

that the nearshore scale (beaches and salt marshes) will be much more susceptible to 

salinization due to sea-level rise than aquifers of the embayment scale. These systems 

respond to changes over short time scales very rapidly. This hydraulic independence 

important because the complexity of coastal groundwater systems is substantial enough 

that many investigations focus on particular field sites or scientific questions specific to a 

single spatial scale. Although large, integrated studies of coastal groundwater flow may 

be able to provide a more comprehensive understanding for complex groundwater 

processes, the assumptions necessary to perform these investigations oftentimes result in 

conclusions that are too idealized or general. Detailed study of the complex groundwater 

processes at specific spatial scales is required to gain an intimate knowledge of the 

dynamics that control flow and material fluxes at the land-sea interface.  
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Appendix B 

Supplemental Material 

S1. Baruch Island Stratigraphy 

The Williamsburg Formation is a late Paleocene age (55 Ma) sediment package that was 

deposited in inner shelf and marginal-marine depositional environments (Campbell and 

Coes, 2010; Petkewich et al., 2004). The Williamsburg Formation, along with the 

underlying Rhems Formation belong to the Black Mingo Group, which is colloquially 

referred to as the Tertiary sands (Petkewich et al., 2004). At its type section, the 

Williamsburg formation is comprised of sandy shale, fossiliferous clayey sand (Lower 

Bridge Member), and a moldic quartz-bearing pelecypod limestone (Chicora Member) 

(Campbell and Coes, 2010; Petkewich et al., 2004). The underlying Rhems Formation is 

comprised mostly of opaline claystone at the type section (Campbell and Coes, 2010). At 

our study site, the Chicora Member limestone is the first major confined aquifer of the 

embayment scale and is also referred to as the Gordon aquifer, which is the lowermost 

aquifer of the Floridan aquifer system (Campbell and Coes, 2010). The overlying Santee 

Limestone and Ocala Limestone (Middle and Upper Floridan respectively) are both 

missing at North Inlet due to stratigraphic pinch out associated with the uplift of the Cape 

Fear Arch. Sediment logs from the SCDNR borehole GEO-380 indicate the Chicora 

Member limestone is underlain by interbedded sequences of mudstone and siltstone, 

referred to as the Crouch Branch confining unit (Campbell and Coes, 2010). 
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Figure B.1. Baruch Borehole locations. H = Hobcaw, GI = Goat Island.
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Figure B.2. Hobcaw 1 sediment log. 



www.manaraa.com

 

160 
 

 

 

Figure B.3. Hobcaw 2 sediment log. 
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Figure B.4. Hobcaw 3 sediment log. 
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Figure B.5. Hobcaw 4 sediment log. 
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Figure B.6. Hobcaw 5 sediment log. 
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Figure B.7. Hobcaw 6 sediment log. 
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Figure B.8. Hobcaw 7 sediment log. 
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Figure B.9. Hobcaw 8 sediment log. 
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Figure B.10. Hobcaw 9 sediment log. 
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Figure B.11. Hobcaw 10 sediment log. 
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Figure B.12. Goat Island 1 Geoprobe log. 
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Figure B.13. Goat Island 2 Geoprobe log. 
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S2. Well Installation  

Reproduced from SCDNR – Hydrology Division 

MONITORING WELL CONSTRUCTION 

Hobcaw Barony Wildlife Refuge  

Georgetown County, South Carolina 

Joe Gellici 

 

STATEMENT OF WORK 

 

The Contractor will provide well-drilling services to the South Carolina Department of 
Natural Resources, Land, Water and Conservation Division (SCDNR-LWC) at Hobcaw 
Barony Wildlife Refuge in Georgetown County. The contract calls for the construction of 
four monitoring wells having depths of 33, 39, 95 and 95 ft (feet). The contractor is 
responsible for providing all necessary materials and for constructing, grouting, 
developing, and finishing the wells. The wells will be used by SCDNR-LWC to monitor 
groundwater levels and salinity; consequently, no permanent pumps will be installed in 
the wells.  

 

SITE DESCRIPTION 

 

The wells will be drilled at two separate locations at the Hobcaw Barony Wildlife 
Refuge, which is located at 20 Hobcaw Road in Georgetown, South Carolina (Figure 
B.14). Owned by the Belle W. Baruch Foundation, the refuge is accessible by dirt road 
off U.S. Highway 17 (Ocean Highway) approximately 1 mile past the Waccamaw River 
Bridge.  

 

The first site, herein referred to as the Goat Island site, is located at 33°20'06.08"N and 
79°11'39.72"W (Figures B.14 and B.15). Two wells will be drill at this site (see details 
below). To access this site, a temporary bridge (20-ft Quick Bridge) must be erected over 
a small tidal creek. The Contractor is responsible for costs associated with the rental, 
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installation, and removal of the bridge. There is an existing bridge that spans this creek, 
but this bridge is not to be used for crossing with the drill rig. 

 

The second site, herein referred to as the Hobcaw site, is located at 33°20'28.40"N and 
79°12'12.04"W (Figures B.14 and B.15). Two wells will be drill at this site (see details 
below). This site is easily accessible; no bridges will need to be erected. 

 

Other than the bridge, minimal site preparation is expected to be needed; however, the 
Contractor must take every responsible precaution to prevent damage to the property and 
to prevent leaking oil and other fluids onto the land surface.  

 

WELL CONSTRUCTION SPECIFICATIONS 

 

Specifications for the construction of the wells are given in this section. 

 

General 

 

The Contractor shall supply capable and experienced personnel and suitable drilling 
equipment to perform the work. The drilling crew shall use adequate safety equipment. 
Work shall be performed in accordance with all applicable Federal Occupational Safety 
and Health Administration standards. 

 

The driller who is onsite shall be licensed by the State of South Carolina as a certified 
well driller. All work shall conform to applicable State and local regulations regarding 
well drilling and installation. 

 

All work shall be completed before June 30, 2015. The SCDNR-LWC will provide a 
representative to monitor progress and assist the Contractor, as necessary. 
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No work shall take place on-site without a SCDNR-LWC representative present unless 
agreed upon in advance by SCDNR-LWC and the Contractor. The Contractor shall make 
no changes in the scope of work unless directed to do so by SCDNR-LWC. SCDNR-
LWC shall be authorized to require the Contractor to stop work when specifications are 
not being met. 

 

The Contractor will provide all well casing, well screen, well enclosures, and casing 
centralizers. The Contractor will be responsible for procuring, providing, and maintaining 
all other equipment and supplies necessary to perform the work described herein 
including drilling fluids, gravel-pack materials, and grouts.   

 

SCDNR-LWC will obtain the necessary well-construction permits from the South 
Carolina Department of Health and Environmental Control (SCDHEC) prior to drilling. 
The Contractor will be responsible for complying with any other local, State, or Federal 
requirements as to licenses, permits, fees, etc., or regulations with respect to the drilling 
and construction operations. The Contractor will be responsible for filling out SCDHEC 
Water Well Records (Form 1903) for each of the wells within 30 days of well 
completion.  

 

The Contractor must take every reasonable precaution to prevent damage to the property 
or fixtures on the property upon which the well is constructed. Any damage to the 
property or fixtures by the Contractor will be corrected by the Contractor at his expense. 

 

The Contractor will be responsible for taking any precautions necessary to prevent 
leaking of oil or other contaminants into wells or mud pits or onto the land surface, and 
for cleaning up any contamination that occurs to the satisfaction of the SCDNR-LWC 
representative. Any contaminated soil or other materials will be disposed of in an area 
approved by SCDNR-LWC. 

 

All materials used to prepare the drilling fluid must be composed of fresh non-polluted 
water and sodium bentonite. All other drilling fluid additives used must be approved by 
the SCDNR-LWC representative, they must comply with recognized industry standards 
and practices, and they will be used as prescribed by the manufacturer. No toxic and/or 
dangerous material can be added to the drilling fluid. If additives deemed 
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environmentally harmful by SCDNR-LWC are added to the drilling fluids then the 
drilling fluids will have to be removed from the site for proper disposal. 

Drilling fluids and drill cuttings must be contained and disposed of in an area approved 
by SCDNR-LWC. Drilling fluids cannot be discharged directly into the marsh as the 
marsh/waterways are a part of the North Inlet-Winyah Bay NERR (National Estuarine 
Research Reserve).   

 

No cement shall be disposed of at the drill site. If a cement truck is used for supplying 
grout and additional cement remains in the truck after the grouting operation is complete, 
this extra cement must be disposed of off-site. 

 

All lubricants, greases, etc., are subject to SCDNR-LWC approval prior to 
commencement of drilling operations. All connections between drilling rods necessitating 
lubrication must utilize a lubricant approved by SCDNR-LWC. A list of all drilling 
muds, additives, and lubricants shall be provided to the SCDNR-LWC representative 
upon request.  

 

Potable water and power will not be available at the site and must be provided by the 
Contractor.  

 

Any hole in which the Contractor voluntarily stops work, and/or fails to complete in a 
satisfactory manner, in accordance with the specifications outlined herein by SCDNR-
LWC or any approved changes, or fails to complete for any reason other than 
uncontrollable geologic circumstances (as determined by mutual agreement between 
SCDNR-LWC and the Contractor), will be considered abandoned by the Contractor. The 
Contractor will, at his expense, drill a new hole located as specified by SCDNR-LWC.  

 

All abandoned holes must be properly plugged and sealed by the Contractor in 
accordance with State regulations. Any hole abandoned by the Contractor shall be 
properly plugged at the expense of the Contractor. All abandoned holes shall be plugged 
from bottom to top with cement. 
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The Contractor, in consultation with a SCDNR-LWC representative, may install surface 
casing to prevent caving of surficial sediments and mud loss. The casing shall be grouted 
with neat cement from bottom to top in one operation, either by pressure grouting or 
using a tremie pipe. 

 

Drill cuttings are NOT required to be collected from the boreholes. A continuous core is 
available from a nearby borehole that has be used to determine well depths and screen 
locations.  

 

Well Construction Details 

 

Monitoring Well #1 – Goat Island site – Shallow well 

 

This well will be 33 ft deep and constructed using a single-string installation with 4-inch 
PVC casing and 4-inch PVC screen (Figure B.16). The well will be gravel-packed and 
grouted with neat cement.  

 

Construction specifications for the well are as follows: 

 

• Total depth:  33 ft 
• Borehole diameter:  8 inches 
• Well casing:  31 ft of 4-inch diameter, Schedule-40, flush-joint, PVC  
• Well screen:  2 ft of 4-inch diameter, Schedule-40, flush-joint, slotted PVC (0.010 

slot)  
 

The borehole will be drilled to a diameter of 8 inches and to a depth of 33 ft. A plug or 
cap will be screwed to the bottom of the well screen and the casing and screen will be 
inserted into and centered in the borehole to 33 ft.  

 

Following insertion and alignment of the string of casing and screen, a filter pack (sand 
#2) will be emplaced around the well screen using a tremie-pipe method of emplacement. 
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The filter pack will extend from the bottom of the well (33 ft) to 1 ft above the screened 
interval (30 ft). A 5-ft bentonite plug will be emplaced at the top of the filter pack by 
gravity feeding or washing bentonite pellets through a tremie line, or by another method 
approved by SCDNR-LWC. The well will be grouted with Portland Type I neat cement 
from the top of the bentonite plug to land surface using a tremie-pipe method.   

 

Following placement of the well screen, the well will be developed by blowing with air 
or by another method approved by SCDNR-LWC until a clear “sand free” discharge is 
achieved. It is estimated that well development will require a maximum time of two 
hours.  

 

After well development has been completed, the well will be sounded by SCDNR-LWC. 
If any material is found at the bottom of the well, it must be cleaned out by the Contractor 
to the satisfaction of SCDNR-LWC. If the well is found to be defective, the Contractor 
will be responsible for repairing or replacing the well. 

 

The well is to be finished with 4-inch casing protruding about 3 feet above land surface. 
The well will be enclosed with a 6-inch square protective steel enclosure equipped with a 
removable or hinged, lockable cap. The enclosure must be plumb to the satisfaction of 
SCDNR-LWC. A 3-foot by 3-foot concrete pad, about 4 inches thick, will be poured 
around the well. 

 

Upon completion of the well drilling, the Contractor must remove and dispose of all 
cuttings and surplus material resulting from the work. The well site must be restored to its 
original condition to the satisfaction of SCDNR-LWC. Mud pits, if used, must be filled 
and leveled and all trash, scrap material, etc. shall be removed from the site. On-site 
disposal of non-hazardous drilling mud and drill cuttings would be considered if 
approved by SCDNR-LWC.  

 

A well identification label must be attached to the well casing. It must include the 
company name and certification number of the driller who installed the well, the dated 
the well was completed, total well depth, and casing depth. 
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A water-well construction record (DHEC 1903 form) must be submitted by the driller to 
DHEC and DNR within 30 days of well completion. 

 
Well Construction Details 

 

Monitoring Well #2 – Goat Island site – Deep well 

 

This well will be 95 ft deep and constructed using a single-string installation with 4-inch 
PVC casing and 4-inch PVC screen (Figure B.17). The well will be gravel-packed and 
grouted with neat cement.  

 

Construction specifications for the well are as follows: 

 

• Total depth:  95 ft 
• Borehole diameter:  8 inches 
• Well casing:  90 ft of 4-inch diameter, Schedule-40, flush-joint, PVC  
• Well screen:  5 ft of 4-inch diameter, Schedule-40, flush-joint, slotted PVC (0.010 

slot)  
 

The borehole will be drilled to a diameter of 8 inches and to a depth of 95 ft. A plug or 
cap will be screwed to the bottom of the well screen and the casing and screen will be 
inserted into and centered in the borehole to 95 ft.  

 

Following insertion and alignment of the string of casing and screen, a filter pack (sand 
#2) will be emplaced around the well screen using a tremie-pipe method of emplacement. 
The filter pack will extend from the bottom of the well (95 ft) to 3 ft above the screened 
interval (87 ft). A 5-ft bentonite plug will be emplaced at the top of the filter pack by 
gravity feeding or washing bentonite pellets through a tremie line, or by another method 
approved by SCDNR-LWC. The well will be grouted with Portland Type I neat cement 
from the top of the bentonite plug to land surface using a tremie-pipe method.   
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Following placement of the well screen, the well will be developed by blowing with air 
or by another method approved by SCDNR-LWC until a clear “sand free” discharge is 
achieved. It is estimated that well development will require a maximum time of two 
hours.  

 

After well development has been completed, the well will be sounded by SCDNR-LWC. 
If any material is found at the bottom of the well, it must be cleaned out by the Contractor 
to the satisfaction of SCDNR-LWC. If the well is found to be defective, the Contractor 
will be responsible for repairing or replacing the well. 

 

The well is to be finished with 4-inch casing protruding about 3 feet above land surface. 
The well will be enclosed with a 6-inch square protective steel enclosure equipped with a 
removable or hinged, lockable cap. The enclosure must be plumb to the satisfaction of 
SCDNR-LWC. A 3-foot by 3-foot concrete pad, about 4 inches thick, will be poured 
around the well. 

 

Upon completion of the well drilling, the Contractor must remove and dispose of all 
cuttings and surplus material resulting from the work. The well site must be restored to its 
original condition to the satisfaction of SCDNR-LWC. Mud pits, if used, must be filled 
and leveled and all trash, scrap material, etc. shall be removed from the site. On-site 
disposal of non-hazardous drilling mud and drill cuttings would be considered if 
approved by SCDNR-LWC.  

 

A well identification label must be attached to the well casing. It must include the 
company name and certification number of the driller who installed the well, the dated 
the well was completed, total well depth, and casing depth. 

 

A water-well construction record (DHEC 1903 form) must be submitted by the driller to 
DHEC and DNR within 30 days of well completion. 

 

Well Construction Details 
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Monitoring Well #3 – Hobcaw site – Shallow well 

 

This well will be 39 ft deep and constructed using a single-string installation with 4-inch 
PVC casing and 4-inch PVC screen (Figure B.18). The well will be gravel-packed and 
grouted with neat cement.  

 

Construction specifications for the well are as follows: 

 

• Total depth:  39 ft 
• Borehole diameter:  8 inches 
• Well casing:  37 ft of 4-inch diameter, Schedule-40, flush-joint, PVC  
• Well screen:  2 ft of 4-inch diameter, Schedule-40, flush-joint, slotted PVC (0.010 

slot)  
 

The borehole will be drilled to a diameter of 8 inches and to a depth of 39 ft. A plug or 
cap will be screwed to the bottom of the well screen and the casing and screen will be 
inserted into and centered in the borehole to 39 ft.  

 

Following insertion and alignment of the string of casing and screen, a filter pack (sand 
#2) will be emplaced around the well screen using a tremie-pipe method of emplacement. 
The filter pack will extend from the bottom of the well (39 ft) to 1 ft above the screened 
interval (36 ft). A 5-ft bentonite plug will be emplaced at the top of the filter pack by 
gravity feeding or washing bentonite pellets through a tremie line, or by another method 
approved by SCDNR-LWC. The well will be grouted with Portland Type I neat cement 
from the top of the bentonite plug to land surface using a tremie-pipe method.   

 

Following placement of the well screen, the well will be developed by blowing with air 
or by another method approved by SCDNR-LWC until a clear “sand free” discharge is 
achieved. It is estimated that well development will require a maximum time of two 
hours.  

 

After well development has been completed, the well will be sounded by SCDNR-LWC. 
If any material is found at the bottom of the well, it must be cleaned out by the Contractor 
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to the satisfaction of SCDNR-LWC. If the well is found to be defective, the Contractor 
will be responsible for repairing or replacing the well. 

 

The well is to be finished with 4-inch casing protruding about 3 feet above land surface. 
The well will be enclosed with a 6-inch square protective steel enclosure equipped with a 
removable or hinged, lockable cap. The enclosure must be plumb to the satisfaction of 
SCDNR-LWC. A 3-foot by 3-foot concrete pad, about 4 inches thick, will be poured 
around the well. 

 

Upon completion of the well drilling, the Contractor must remove and dispose of all 
cuttings and surplus material resulting from the work. The well site must be restored to its 
original condition to the satisfaction of SCDNR-LWC. Mud pits, if used, must be filled 
and leveled and all trash, scrap material, etc. shall be removed from the site. On-site 
disposal of non-hazardous drilling mud and drill cuttings would be considered if 
approved by SCDNR-LWC.  

 

A well identification label must be attached to the well casing. It must include the 
company name and certification number of the driller who installed the well, the dated 
the well was completed, total well depth, and casing depth. 

 

A water-well construction record (DHEC 1903 form) must be submitted by the driller to 
DHEC and DNR within 30 days of well completion. 

 

Well Construction Details 

 

Monitoring Well #4 – Hobcaw site – Deep well 

 

This well will be 95 ft deep and constructed using a single-string installation with 4-inch 
PVC casing and 4-inch PVC screen (Figure B.19). The well will be gravel-packed and 
grouted with neat cement.  
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Construction specifications for the well are as follows: 

 

• Total depth:  95 ft 
• Borehole diameter:  8 inches 
• Well casing:  90 ft of 4-inch diameter, Schedule-40, flush-joint, PVC  
• Well screen:  5 ft of 4-inch diameter, Schedule-40, flush-joint, slotted PVC (0.010 

slot)  
 

The borehole will be drilled to a diameter of 8 inches and to a depth of 95 ft. A plug or 
cap will be screwed to the bottom of the well screen and the casing and screen will be 
inserted into and centered in the borehole to 95 ft.  

 

Following insertion and alignment of the string of casing and screen, a filter pack (sand 
#2) will be emplaced around the well screen using a tremie-pipe method of emplacement. 
The filter pack will extend from the bottom of the well (95 ft) to 3 ft above the screened 
interval (87 ft). A 5-ft bentonite plug will be emplaced at the top of the filter pack by 
gravity feeding or washing bentonite pellets through a tremie line, or by another method 
approved by SCDNR-LWC. The well will be grouted with Portland Type I neat cement 
from the top of the bentonite plug to land surface using a tremie-pipe method.   

 

Following placement of the well screen, the well will be developed by blowing with air 
or by another method approved by SCDNR-LWC until a clear “sand free” discharge is 
achieved. It is estimated that well development will require a maximum time of two 
hours.  

 

After well development has been completed, the well will be sounded by SCDNR-LWC. 
If any material is found at the bottom of the well, it must be cleaned out by the Contractor 
to the satisfaction of SCDNR-LWC. If the well is found to be defective, the Contractor 
will be responsible for repairing or replacing the well. 

 

The well is to be finished with 4-inch casing protruding about 3 feet above land surface. 
The well will be enclosed with a 6-inch square protective steel enclosure equipped with a 
removable or hinged, lockable cap. The enclosure must be plumb to the satisfaction of 
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SCDNR-LWC. A 3-foot by 3-foot concrete pad, about 4 inches thick, will be poured 
around the well. 

 

Upon completion of the well drilling, the Contractor must remove and dispose of all 
cuttings and surplus material resulting from the work. The well site must be restored to its 
original condition to the satisfaction of SCDNR-LWC. Mud pits, if used, must be filled 
and leveled and all trash, scrap material, etc. shall be removed from the site. On-site 
disposal of non-hazardous drilling mud and drill cuttings would be considered if 
approved by SCDNR-LWC.  

 

A well identification label must be attached to the well casing. It must include the 
company name and certification number of the driller who installed the well, the dated 
the well was completed, total well depth, and casing depth. 

 

A water-well construction record (DHEC 1903 form) must be submitted by the driller to 
DHEC and DNR within 30 days of well completion. 

 
PROTECTION OF WATER QUALITY 

 

The Contractor shall take precautions, as are necessary or as may be required by 
SCDNR-LWC, to permanently prevent contaminated water or water having undesirable 
physical or chemical characteristics from entering the water-bearing formations through 
any opening made by the Contractor.  In the event that well becomes contaminated, or 
contamination enters the well due to neglect of the Contractor, he shall, at his own 
expense, perform such work or supply such casings, seals, sterilizing agents or materials 
as necessary to eliminate the contamination or shut off the undesirable water.  The 
Contractor must exercise extreme care in the performance of his work in order to prevent 
the breakdown or caving in of strata overlying the formation from which water is to be 
drawn. 

 

PROTECTION OF PERSON AND PROPERTY 
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Job performance is to be in compliance with all applicable OSHA safety regulations. An 
eye wash, first-aid kit, fire extinguisher and emergency telephone numbers shall be 
provided on site. The Contractor must maintain good housekeeping at the well site and at 
all equipment and storage locations. This means all facilities and equipment shall be kept 
neat, clean and orderly. All trash, mud sacks, cement sacks, and other disposable items 
must be contained at each well site and properly disposed of periodically. SCDNR-LWC 
shall be authorized to stop work if safety-related requirements are not followed. 
Continued, willful abuse of the safety and housekeeping requirements will be grounds for 
termination of this contract. 

 

PAYMENT 

 

Upon satisfactory completion of the wells, the Contractor will submit to the SCDNR-
LWC a detailed statement listing total amounts of materials used in constructing the 
wells. In consideration for the satisfactory completion of the project, the SCDNR-LWC 
will make payment to the Contractor in a sum of 100 percent of the total bill. SCDNR-
LWC will not pay for time lost due to rig breakdown, loss of tools, difficulties in 
procuring materials, or for abandoned holes. 

 

All work must be completed and invoiced by June 30, 2015. 
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Figure B.14. Location of Hobcaw Barony wildlife refuge in Georgetown County. 
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Figure B.15. Location of the Goat Island and Hobcaw drill sites. 
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Figure B.16. Well-construction diagram for monitoring well #1. 
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Figure B.17. Well-construction diagram for monitoring well #2. 
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Figure B.18. Well-construction diagram for monitoring well #3. 

 

 

 

 



www.manaraa.com

 

189 
 

 

 

Figure B.19. Well-construction diagram for monitoring well #4. 
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Figure B.20. Gamma ray log well the four wells 
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S3. North Inlet Model Calibration 

We calibrated flow in the model to salinity data collected from the resistivity surveys and 

the four wells (GEO-0384, 0385, 0386, 0387). We chose permeability values that best 

represented our field data by comparing simulated hydraulic head and salinity to 

observed field data. We were able to calibrate groundwater salinities and head to field 

data with reasonable accuracy (Table B.1). However, we did not simulate 

evapotranspiration in our model, which led to a slight under approximation of salinity in 

the marsh basins.  

The model was able to accurately reproduce measured groundwater salinity in 

wells GEO-0385, 0386, and 0387. The model was unable to reproduce saline 

groundwater conditions measured under Goat Island, in well GEO-0384, under any 

reasonable hydraulic circumstances. To accurately simulate the hydraulic head measured 

on Goat Island, rates of precipitation always dictated that groundwater here was fresh. 

These simulated fresh groundwater results matched the in-situ salinity data we collected 

from the geoprobe core and the resistivity results for Goat Island. We hypothesized that 

GEO-0384 was most likely screened in an isolated sediment interval with elevated 

groundwater salinity, such as a salicornia zone from a buried marsh platform. 

 For the confined sandy aquifer, we found a permeability of 5 x 10-12 m2 to 

simulate hydraulic head that best matched the average hydraulic head measurements and 

amplitude of the tidal signal from wells GEO-0384 and 0386 (Table B.1; Fig. B.21a-c). 

For all simulations, hydraulic head in the confined sand aquifer increased with decreasing 

permeability. We found increasing values of permeability to increase the amplitude of the 

tidal signal (Fig. B.21b-c). In the Chicora Member, we found varying values of 

permeability to have a limited effect on the modeled hydraulic head. In general, the 
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simulated hydraulic gradient between wells GEO-0385 and 0387 increased with 

decreasing values of permeability (Table B.1). Decreasing values of permeability 

decreased the amplitude of the tidal signal in the simulated head (Fig. B.21d-e). A 

permeability of 5 x 10-13 m2 completely attenuated the tidal signal in the simulated 

hydraulic head at the location of well GEO-0387 (Fig. B.21e). We found permeability 

values between 1 x 10-11 and 5 x 10-12 m2 to best match observed hydraulic head and 

amplitude of the tidal signal in the Chicora Member (Table B.1; Fig. B.21d-e).  
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Table B.1. Simulated hydraulic head and groundwater salinity at quasi-equilibrium, 
averaged over a tidal cycle. 

Results 
GEO – 0384 
(Goat Island) 

 

GEO – 0386 
(Marsh Road) 

 

GEO – 0385 
(Goat Island) 

 

GEO – 0387 
(Marsh Road) 

 

Permeability (m2) 1 x 10-10 1 x 10-11 

Average Hydraulic 
Head (m) 0.5 1.4 1.8 2.0 

Average Hydraulic 
Gradient -8.7 x 10-4 -2.2 x 10-4 

Average Salinity (ppt) 5.3 0 1.6 0 

Permeability (m2) 5 x 10-11 5 x 10-12 

Average Hydraulic 
Head (m) 0.5 1.5 1.7 1.9 

Average Hydraulic 
Gradient -8.7 x 10-4

 -2.5 x 10-4 

Average Salinity (ppt) 2.3 0 0.32 0 

Permeability (m2) 1 x 10-11 1 x 10-12 

Average Hydraulic 
Head (m) 0.6 1.6 1.4 1.9 

Average Hydraulic 
Gradient -9.8 x 10-4 -5.2 x 10-4 

Average Salinity (ppt) 0 0 0 0 

Permeability (m2) 5 x 10--12 5 x 10-13 

Average Hydraulic 
Head (m) 0.7 1.8 1.2 1.9 

Average Hydraulic 
Gradient -1.0 x 10-3 -6.5 x 10-4 

Average Salinity (ppt) 0 0 0 0 
*Grey shading indicates parameters used in subsequent simulations.  
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Figure B.21. Model calibration for the second confined aquifer and the Chicora Member 
aquifer. a) Observed hydraulic head data. b-e) Simulated hydraulic head data. 


	University of South Carolina
	Scholar Commons
	2016

	Submarine Groundwater Discharge and the Configuration of the Freshwater-Saltwater Interface at the Nearshore and Embayment Scales
	Tyler Brandon Evans
	Recommended Citation


	tmp.1500997193.pdf.dmegH

